Table of Contents Table of Contents
Previous Page  2276 / 2894 Next Page
Information
Show Menu
Previous Page 2276 / 2894 Next Page
Page Background

2276

Anestesia por subespecialidades en el adulto

IV

oxigenación. La atención cuidadosa de los detalles maximizará la

seguridad del paciente en este entorno. A partir de estudios adicio-

nales sobre su mecanismo de acción surgirá la optimización de las

pautas terapéuticas. Los avances en la prevención y el tratamiento

de la toxicidad del O

2

quizá permitan un tratamiento más prolon-

gado del que puede administrarse en la actualidad de forma segura

y así posibiliten una actitud más enérgica frente a los síndromes

isquémicos e infecciosos.

La reducción de la presión ambiental y la hipoxia consi-

guiente asociadas con la exposición aguda a una elevada altitud

provocan cambios fisiológicos bien definidos que suelen asociarse

a síntomas clínicos. Se han descrito métodos profilácticos y tera-

péuticos. La anestesia segura a elevada altitud requiere ciertas

modificaciones de las técnicas a nivel del mar, no sólo por la hipoxia

y por la reducción de la presión ambiental, sino también porque

puede disponerse de equipos subóptimos en condiciones de

montaña.

La anestesia en el espacio plantea dificultades excepciona-

les que pueden prolongarse incluso más allá del regreso a la

Tierra.

Bibliografía

1. Fontaine J-A: Emploi chirurgical de l air comprimé.

Un Méd Paris 28(Sér 3)445–448, 1879.

2. Zuntz N: Zur Pathogenese und Therapie der durch

rasche Luftdruckänderungen erzeugten Krankhei-

ten. Fortschr Med 15:632–639, 1897.

3. Yarbrough OD, Behnke AR: The treatment of com-

pressed air illness using oxygen. J Ind Hyg Toxicol

21:213–218, 1939.

4. Cochran WD, Levison H, Muirhead DM Jr, et al: A

clinical trial of high oxygen pressure for the

respiratory-distress syndrome. N Engl J Med 272:

347, 1965.

5. Boerema I, Meijne NG, Vermeulen-Cranch DME:

Observations during operation on deeply cyanotic

young children breathing oxygen at three atmos-

pheres absolute. Surgery 52:796–799, 1962.

6. Bernhard WF, Frittelli G, Tank ES, Carr JG: Surgery

under hyperbaric oxygenation in infants with congeni-

tal cardiac disease. Circulation 29(Suppl)91–94, 1964.

7. Gesell LB (ed): Hyperbaric Oxygen Therapy: Indi-

cations. Durham, NC, Undersea and Hyperbaric

Medical Society, 2008.

8. Bert P: Barometric Pressure (La Pression Barométri-

que). Bethesda, MD, Undersea Medical Society, 1978.

9. Gilbert R, Keighley JF: The arterial-alveolar oxygen

tension ratio: An index of gas exchange applicable

to varying inspired oxygen concentrations. Am Rev

Respir Dis 109:142–145, 1974.

10. Mathieu D, Neviere R, Pellerin P, et al: Pedicle mus-

culocutaneous flap transplantation: Prediction of

final outcome by transcutaneous oxygen measure-

ments in hyperbaric oxygen. Plast Reconstr Surg

91:329–334, 1993.

11. Fife CE, Buyukcakir C, Otto GH, et al: The predic-

tive value of transcutaneous oxygen tension measu-

rement in diabetic lower extremity ulcers treated

with hyperbaric oxygen therapy: A retrospective

analysis of 1,144 patients. Wound Repair Regen

10:198–207, 2002.

12. Demchenko IT, Oury TD, Crapo JD, Piantadosi CA:

Regulation of the brain’s vascular responses to

oxygen. Circ Res 91:1031–1037, 2002.

13. Stamler JS, Jia L, Eu JP, et al: Blood flow regulation

by S-nitrosohemoglobin in the physiological oxygen

gradient. Science 276:2034–2037, 1997.

14. McMahon TJ, Moon RE, Luschinger BP, et al: Nitric

oxide in the human respiratory cycle. Nature Med

8:711–717, 2002.

15. Whalen R, Saltzman H, Holloway D, et al: Cardio-

vascular and blood gas responses to hyperbaric

oxygenation. Am J Cardiol 15:638–646, 1965.

16. Ishikawa K, Kanamasa K, Yamakado T, et al: The

failure of oxygen breathing to decrease the myocar-

dial contractile force in denervated dogs. Jpn Circ J

47:824–829, 1983.

17. Savitt MA, Rankin JS, Elberry JR, et al: Influence of

hyperbaric oxygen on left ventricular contractility,

total coronary blood flow, and myocardial oxygen

consumption in the conscious dog. Undersea

Hyperb Med 21:169–183, 1994.

18. Berry JM, Doursout MF, Butler BD: Effects of

hyperbaric hyperoxia on cardiac and regional

hemodynamics in conscious dogs. Aviat Space

Environ Med 69:761–765, 1998.

19. Abel FL, McNamee JE, Cone DL, et al: Effects of

hyperbaric oxygen on ventricular performance,

pulmonary blood volume, and systemic and pulmo-

nary vascular resistance. Undersea Hyperb Med

27:67–73, 2000.

20. Lavoute C, Weiss M, Rostain JC: The role of NMDA

and GABA(A) receptors in the inhibiting effect of

3 MPa nitrogen on striatal dopamine level. Brain

Res 1176:37–44, 2007.

21. Bennett PB, Towse EJ: The high pressure nervous

syndrome during a simulated oxygen-helium dive

to 1500 ft. Electroencephalogr Clin Neurophysiol

31:383–393, 1971.

22. Bennett PB, Coggin R, Roby J: Control of HPNS in

humans during rapid compression with trimix to 650

m (2132 ft). Undersea Biomed Res 8:85–100, 1981.

23. Rostain JC, Balon N: Recent neurochemical basis of

inert gas narcosis and pressure effects. Undersea

Hyperb Med 33:197–204, 2006.

24. Winter PM, Smith RA, Smith M, Eger EIII: Pressure

antagonism of barbiturate anesthesia. Anesthesio-

logy 44:416–419, 1976.

25. Gran L, Coggin R, Bennett PB: Diazepam under

hyperbaric conditions in rats. Acta Anaesth Scand

24:407–411, 1980.

26. Tonner PH, Poppers DM, Miller KW: The general

anesthetic potency of propofol and its dependence

on hydrostatic pressure. Anesthesiology 77:926–

931, 1992.

27. Tonner PH, Scholz J, Koch C, Schulte am Esch J: The

anesthetic effect of dexmedetomidine does not adhere

to the Meyer-Overton rule but is reversed by hydros-

tatic pressure. Anesth Analg 84:618–622, 1997.

28. Koblin DD, Fang Z, Eger EI 2nd, et al: Minimum

alveolar concentrations of noble gases, nitrogen,

and sulfur hexafluoride in rats: Helium and neon as

nonimmobilizers (nonanesthetics). Anesth Analg

87:419–424, 1998.

29. Heimburg T, Jackson AD: The thermodynamics of

general anesthesia. Biophys J 92:3159–3165, 2007.

30. Gross DR, Kramer WG, Gentile BJ, et al: Plasma

volume and estimated liver plasma flow during

hyperbaric and hyperoxic exposures in awake dogs.

Aviat Space Environ Med 56:1203–1208, 1985.

31. Kramer WG, Gross DR, Moreau PM, Fife WP: Drug

disposition under hyperbaric and hyperbaric-hype-

roxic conditions: Meperidine in the dog. Aviat Space

Environ Med 54:410–412, 1983.

32. Kramer WG, Welch DW, Fife WP, et al: Pharmaco-

kinetics of pentobarbital under hyperbaric and

hyperbaric hyperoxic conditions in the dog. Aviat

Space Environ Med 54:1005–1008, 1983.

33. Kramer WG, Gross DR, Fife WP, Chaikin BN:

Theophylline pharmacokinetics during hyperbaria

and hyperbaric hyperoxia in the dog. Res Commun

Chem Pathol Pharmacol 34:381–388, 1981.

34. Kramer WG, Welch DW, Fife WP, et al: Salicylate

pharmacokinetics in the dog at 6 ATA in air and at

2.8 ATA in 100% oxygen. Aviat Space Environ Med

54:682–684, 1983.

35. Stoudemire A, Miller J, Schmitt F, et al: Develop-

ment of an organic affective syndrome during a

hyperbaric diving experiment. Am J Psychiatry

141:1251–1254, 1984.

36. Piantadosi CA, Lee PA, Sylvia AL: Direct effects of

CO on cerebral energy metabolism in bloodless

rats. J Appl Physiol 65:878–887, 1988.

37. Thom S: Antagonism of carbon monoxide-media-

ted brain lipid peroxidation by hyperbaric oxygen.

Toxicol Appl Pharmacol 105:340–344, 1990.

38. Thom SR: Dehydrogenase conversion to oxidase

and lipid peroxidation in brain after carbon

monoxide poisoning. J Appl Physiol 73:1584–1589,

1992.

39. Thom SR: Functional inhibition of leukocyte b2

integrinsbyhyperbaricoxygenincarbonmonoxide-

mediated brain injury in rats. Toxicol Appl Pharma-

col 123:248–256, 1993.

40. Thom SR: Leukocytes in carbon monoxide-media-

ted brain oxidative injury. Toxicol Appl Pharmacol

123:234–247, 1993.

41. Piantadosi CA: Diagnosis and treatment of carbon

monoxide poisoning. Respir Care Clin North Am

5:183–202, 1999.

42. Thom SR, Fisher D, Manevich Y: Roles for platelet-

activating factor and *NO-derived oxidants causing

neutrophil adherence after CO poisoning. Am

J Physiol Heart Circ Physiol 281:H923–H930, 2001.

43. Thom SR, Bhopale VM, Fisher D: Hyperbaric

oxygen reduces delayed immune-mediated neuro-

pathology in experimental carbon monoxide toxi-

city. Toxicol Appl Pharmacol 213:152–159, 2006.

44. Thom SR, Bhopale VM, Han ST, et al: Intravascular

neutrophil activation due to carbon monoxide poi-

soning. Am J Respir Crit Care Med 174:1239–1248,

2006.

45. Kao LW, Nanagas KA: Toxicity associated with

carbon monoxide. Clin Lab Med 26:99–125, 2006.

46. Thom SR, Bhopale VM, Fisher D, et al: Delayed

neuropathology after carbon monoxide poisoning

is immune-mediated. Proc Natl Acad Sci USA

101:13660–13665, 2004.

47. Shillito FH, Drinker CK, Shaughnessy TJ: The

problem of nervous and mental sequelae in carbon

monoxide poisoning. JAMA 106:669–674, 1936.

48. Thom S, Taber R, Mendiguren I, et al: Delayed neu-

ropsychologic sequelae after carbon monoxide poi-

soning: Prevention by treatment with hyperbaric

oxygen. Ann Emerg Med 25:474–480, 1995.

49. Weaver LK, Hopkins RO, Chan KJ, et al: Hyperbaric

oxygen for acute carbon monoxide poisoning. N

Engl J Med 347:1057–1067, 2002.

50. Weaver LK, Valentine KJ, Hopkins RO: Carbon

monoxide poisoning: Risk factors for cognitive

sequelae and the role of hyperbaric oxygen. Am

J Respir Crit Care Med 176:491–497, 2007.