80. Kern FH, Jonas RA, Mayer JE, et al: Temperature
monitoring during infant CPB: Does it predict effi-
cient brain cooling? Ann Thorac Surg 54:749,
1992.
81. Laishley RS, Burrows FA, Lerman J, et al: Effects of
anesthetic induction on oxygen saturation in cya-
notic congenital heart disease. Anesthesiology
65:673, 1986.
82. Greeley WJ, Bushman GA, Davis DP, Reves JG:
Comparative effects of halothane and ketamine on
systemic arterial oxygen saturation in children with
cyanotic heart disease. Anesthesiology 65:666,
1986.
83. Murray D, Vandewalker G, Matherne P, Mahoney
LT: Pulsed Doppler and two dimensional echocar-
diography: Comparison of halothane and isoflurane
on cardiac function in infants and small children.
Anesthesiology 67:211, 1987.
84. Friesen RH, Lichtor JL: Cardiovascular effects of
inhalational induction with isoflurane in infants.
Anesth Analg 62:411, 1983.
85. Eger EIII: Desflurane animal and human pharma-
cology: Aspects of kinetics, safety, andMAC. Anesth
Analg 75:53, 1992.
86. Davis PJ, Cohen IT, McGowan FX Jr, Latta K: Reco-
very characteristics of desflurane versus halothane
for maintenance of anesthesia in pediatric ambula-
tory patients. Anesthesiology 80:298, 1994.
87. Warltier DC, Pagel PS: Cardiovascular and respira-
tory actions of desflurane: Is desflurane different
from isoflurane? Anesth Analg 75:517, 1992.
88. Taylor RH, Lerman J: Induction, maintenance and
recovery characteristics of desflurane in infants and
children. Can J Anaesth 39:6, 1992.
89. Smiley RM: An overview of induction and emer-
gence characteristics of desflurane in pediatric, adult,
and geriatric patients. Anesth Analg 75:538, 1992.
90. Taylor RH, Lerman J: Minimum alveolar concentra-
tion of desflurane and hemodynamic responses in
neonates, infants, and children. Anesthesiology
75:975, 1991.
91. White PF: Studies of desflurane in outpatient anes-
thesia. Anesth Analg 75:547, 1992.
92. Zwass MS, Fisher DM, Welborn LG, et al: Induction
and maintenance characteristics of anesthesia with
desflurane and nitrous oxide in infants and chil-
dren. Anesthesiology 76:373, 1992.
93. Sarner JB, Levine M, Davis PJ, et al: Clinical charac-
teristics of sevoflurane in children: A comparison
with halothane. Anesthesiology 82:38, 1995.
94. Kern C, Erb T, Frei FJ: Haemodynamic responses to
sevoflurane compared with halothane during inha-
lational induction in children. Paediatr Anaesth
7:439, 1997.
95. Woodey E, Pladys P, Copin C, et al: Comparative
hemodynamic depression of sevoflurane versus
halothane in infants: An echocardiographic study.
Anesthesiology 87:795, 1997.
96. Holzman RS, van der Velde ME, Kaus SJ, et al: Sevo-
flurane depresses myocardial contractility less than
halothane during induction of anesthesia in chil-
dren. Anesthesiology 85:1260, 1996.
97. Frink EJ Jr, Green WB Jr, Brown EA, et al: Com-
pound A concentrations during sevoflurane anes-
thesia in children. Anesthesiology 85:684, 1996.
98. Hickey PR, Hansen DD, Wessel DL, et al: Pulmo-
nary and systemic hemodynamic responses to fen-
tanyl in infants. Anesth Analg 64:483, 1985.
99. Hickey PR, Hansen DD: Fentanyl- and sufentanil-
oxygen-pancuronium anesthesia for cardiac surgery
in infants. Anesth Analg 63:117, 1984.
100. Hickey PR, Hansen DD, Wessel DL, et al: Blunting
of stress responses in the pulmonary circulation of
infants by fentanyl. Anesth Analg 64:1137, 1985.
101. Moore RA, Yang SS, McNicholas KW, et al: Hemo-
dynamic and anesthetic effects of sufentanil as the
sole anesthetic for pediatric cardiovascular surgery.
Anesthesiology 63:725, 1985.
102. Greeley WJ, deBruijn NP, Davis DP: Sufentanil
pharmacokinetics in pediatric cardiovascular
patients. Anesth Analg 66:1067, 1987.
103. Anand KJS, Hickey PR: Halothane-morphine com-
pared with high-dose sufentanil for anesthesia and
postoperative analgesia in neonatal cardiac surgery.
N Engl J Med 326:1, 1992.
104. Guy J, Hindman BJ, Baker KZ, et al: Comparison of
remifentanil and fentanyl in patients undergoing
craniotomy for supratentorial space-occupying
lesions. Anesthesiology 86:514, 1997.
105. Davis PJ, Lerman J, Suresh S, et al: A randomized
multicenter study of remifentanil compared with
alfentanil, isoflurane, or propofol in anesthetized
pediatric patients undergoing elective strabismus
surgery. Anesth Analg 84:982, 1997.
106. Thompson JR, Hall AP, Russell J, et al: Effect of
remifentanil on the haemodynamic response to
orotracheal intubation. Br J Anaesth 80:467, 1998.
107. Sebel PS, Hoke JF, Westmoreland C, et al: Histamine
concentrations and hemodynamic responses after
remifentanil. Anesth Analg 80:990, 1995.
108. Davis PJ, Cook DR, Stiller RL, Davin-Robinson KA:
Pharmacodynamics and pharmacokinetics of high-
dose sufentanil in infants and children undergoing
cardiac surgery. Anesth Analg 66:203, 1987.
109. Schupbach P, Pappova E, Schilt W, et al: Perfusate
oncotic pressure during cardiopulmonary bypass:
Optimum level as determined by metabolic acido-
sis, tissue edema, and renal function. Vox Sang
35:332, 1978.
110. Haneda K, Thomas R, Breazeale DG, Dillard DH:
The significance of colloid osmotic pressure during
induced hypothermia. J Cardiovasc Surg (Torino)
28:614, 1987.
111. Marelli D, Paul A, Samson CP, et al: Does the addi-
tion of albumin to the prime solution in cardiopul-
monary bypass affect clinical outcome? J Thorac
Cardiovasc Surg 98:751, 1989.
112. Kirklin JW, Barratt-Boyes BG (eds): Cardiac
Surgery, 2nd ed. New York, Churchill Livingstone,
1993.
113. Sakamoto T, Nollert GD, Zurakowski D, et al:
Hemodilution elevates cerebral blood flow and
oxygen metabolism during cardiopulmonary
bypass in piglets. Ann Thorac Surg 77:1656-1663,
2004.
114. Shin’oka T, Shum-Tim D, Jonas RA, et al: Higher
hematocrit improves cerebral outcome after deep
hypothermic circulatory arrest. J Thorac Cardiovasc
Surg 112:1610-1620, 1996.
115. Jonas RA, Wypij D, Roth SJ, et al: The influence of
hemodilution on outcome after hypothermic car-
diopulmonary bypass: Results of a randomized trial
in infants. J Thorac Cardiovasc Surg 126:1765-1774,
2003.
116. Leone BJ, Spahn DR, Smith LR, et al: Acute isovole-
mic hemodilution and blood transfusion: Effects on
regional function and metabolism in myocardium
with compromised coronary blood flow. J Thorac
Cardiovasc Surg 105:694, 1993.
117. Andropoulos DB, Stayer SA, McKenzie DE, et al:
Novel cerebral physiologic monitoring to guide
low-flow cerebral perfusion during neonatal aortic
arch reconstruction. J Thorac Cardiovasc Surg
125:491-499, 2003.
118. Bellinger DC, Wypij D, du Plessis AJ, et al: Develo-
pmental and neurologic effects of alpha-stat versus
pH-stat strategies for deep hypothermic cardiopul-
monary bypass in infants [see comment]. J Thorac
Cardiovasc Surg 121:374-383, 2001, [erratum
appears in J Thorac Cardiovasc Surg 121:893,
2001].
119. Fox LS, Blackstone EH, Kirklin JW, et al: Relations-
hip of whole body oxygen consumption to perfu-
sion flow rate during hypothermic cardiopulmonary
bypass. J Thorac Cardiovasc Surg 83:239, 1982.
120. Michenfelder JD, Theye RA: Hypothermia: Effect of
canine brain and whole-body metabolism. Anesthe-
siology 29:1107, 1968.
121. Fox L, Blackstone E, Kirklin J, et al: Relationship of
brain blood flow and oxygen consumption to per-
fusion flow rate during profoundly hypothermic
cardiopulmonary bypass. J Thorac Cardiovasc Surg
87:658, 1984.
122. Rebeyka IM, Coles JG, Wilson GJ, et al: The effect
of low-flow cardiopulmonary bypass on cerebral
function: An experimental and clinical study. Ann
Thorac Surg 43:391, 1987.
123. Henriksen L: Cerebral blood flow during early car-
diopulmonary bypass in man. Thorac Cardiovasc
Surg 34:116, 1986.
124. Burrows FA, Hillier SC, McLeod ME, et al: Anterior
fontanel pressure and visual evoked potentials in
neonates and infants undergoing profound hypo-
thermic circulatory arrest. Anesthesiology 73:632,
1990.
125. du Plessis AJ, Jonas RA, Wypij D, et al: Perioperative
effects of alpha-stat versus pH-stat strategies for
deep hypothermic cardiopulmonary bypass in
infants. J Thorac Cardiovasc Surg 114:991-1000,
1997.
126. Wernovsky G, Stiles KM, Gauvreau K, et al: Cogni-
tive development after the Fontan operation. Circu-
lation 102:883-889, 2000.
127. Uzark K, Lincoln A, Lamberti JJ, et al: Neurodeve-
lopmental outcomes in children with Fontan repair
of functional single ventricle. Pediatrics 101:630-
633, 1998.
128. Kern JH, Hinton VJ, Nereo NE, et al: Early develo-
pmental outcome after the Norwood procedure for
hypoplastic left heart syndrome. Pediatrics
102:1148-1152, 1998.
129. Oates RK, Simpson JM, Turnbull JA, et al: The rela-
tionship between intelligence and duration of cir-
culatory arrest with deep hypothermia [see
comment]. J Thorac Cardiovasc Surg 110:786-792,
1995.
130. Wells FC, Coghill S, Caplan HL, et al: Duration of
circulatory arrest does influence the psychological
development of children after cardiac operation in
early life. J Thorac Cardiovasc Surg 86:823-831,
1983.
131. Wypij D, Newburger JW, Rappaport LA, et al: The
effect of duration of deep hypothermic circulatory
arrest in infant heart surgery on late neurodevelop-
ment: The Boston Circulatory Arrest Trial [see
comment]. J Thorac Cardiovasc Surg 126:1397-
1403, 2003.
132. Visconti KJ, Rimmer D, Gauvreau K, et al: Regional
low-flow perfusion versus circulatory arrest in neo-
nates: One-year neurodevelopmental outcome. Ann
Thorac Surg 82:2207-2211, 2006.
133. Lanier WL, Stangland KJ, Scheithauer BW, et al: The
effects of dextrose infusion and head position on
neurologic outcome after complete cerebral ische-
mia in primates: Examination of a model. Anesthe-
siology 66:39, 1987.
134. Nakakimura K, Fleischer JE, Drummond JC:
Glucose administration before cardiac arrest
worsens neurologic outcome in cats. Anesthesio-
logy 72:1005, 1990.
135. Plum F: What causes infarction in ischemic brain?
Neurology 33:222, 1983.
2414
Anestesia pediátrica