55. Nishi M, Houtani T, Noda Y, et al: Unrestrained
nociceptive response and disregulation of hearing
ability in mice lacking the nociceptin/orphanin FQ
receptor. EMBO J 16:1858–1864, 1997.
56. Koster A, Montkowski A, Schulz S, et al: Targeted
disruption of the orphanin FQ/nociceptin gene
increases stress susceptibility and impairs stress
adaptation in mice. Proc Natl Acad Sci U S A
96:10444–10449, 1999.
57. Yamamoto T, Sakashita Y: The role of the spinal
opioid receptor like1 receptor, the NK-1 receptor,
and cyclooxygenase-2 in maintaining postoperative
pain in the rat. Anesth Analg 89:1203–1208, 1999.
58. Grisel JE, Mogil JS, Belknap JK, Grandy DK: Orpha-
nin FQ acts as a supraspinal, but not a spinal, anti-
opioid peptide. Neuroreport 7:2125–2129, 1996.
59. Pan Z, Hirakawa N, Fields HL: A cellular mecha-
nism for the bidirectional pain-modulating actions
of orphanin FQ/nociceptin. Neuron 26:515–522,
2000.
60. Portenoy RK, Foley KM, Inturrisi CE: The nature of
opioid responsiveness and its implications for neu-
ropathic pain: New hypotheses derived from studies
of opioid infusions. Pain 43:273–286, 1990.
61. Morgan D, Cook CD, Smith MA, Picker MJ: An
examination of the interactions between the antino-
ciceptive effects of morphine and various
m
-opioids:
The role of intrinsic efficacy and stimulus intensity.
Anesth Analg 88:407–413, 1999.
62. Perrot S, Guilbaud G, Kayser V: Differential beha-
vioral effects of peripheral and systemic morphine
and naloxone in a rat model of repeated acute infla-
mmation. Anesthesiology 94:870–875, 2001.
63. Kest B, Sarton E, Dahan A: Gender differences in
opioid-mediated analgesia: Animal and human
studies. Anesthesiology 93:539–547, 2000.
64. Sarton E, Olofsen E, Romberg R, et al: Sex differen-
ces in morphine analgesia: An experimental study
in healthy volunteers.Anesthesiology 93:1245–1254,
discussion 1246A, 2000.
65. Gupta A, Bodin L, Holmstrom B, Berggren L: A
systematic review of the peripheral analgesic effects
of intraarticular morphine. Anesth Analg 93:761–
770, 2001.
66. Kapral S, Gollmann G, Waltl B, et al: Tramadol
added to mepivacaine prolongs the duration of an
axillary brachial plexus blockade. Anesth Analg
88:853–856, 1999.
67. Nishikawa K, Kanaya N, Nakayama M, et al: Fen-
tanyl improves analgesia but prolongs the onset of
axillary brachial plexus block by peripheral mecha-
nism. Anesth Analg 91:384–387, 2000.
68. Bouaziz H, Kinirons BP, Macalou D, et al: Sufentanil
does not prolong the duration of analgesia in a
mepivacaine brachial plexus block: A dose response
study. Anesth Analg 90:383–387, 2000.
69. Latta KS, Ginsberg B, Barkin RL: Meperidine: A cri-
tical review. Am J Ther 9:53–68, 2002.
70. Osman NI, Baghdoyan HA, Lydic R: Morphine
inhibits acetylcholine release in rat prefrontal cortex
when delivered systemically or by microdialysis to
basal forebrain. Anesthesiology 103:779–787, 2005.
71. Philbin DM, Rosow CE, Schneider RC, et al: Fen-
tanyl and sufentanil anesthesia revisited: How much
is enough? Anesthesiology 73:5–11, 1990.
72. Michelsen LG, Salmenpera M, Hug CC Jr, et al:
Anesthetic potency of remifentanil in dogs. Anes-
thesiology 84:865–872, 1996.
73. Steffey EP: Isoflurane-sparing effect of fentanyl in
swine. Relevance and importance. Anesthesiology
83:446–448, 1995.
74. McEwan AI, Smith C, Dyar O, et al: Isoflurane
minimum alveolar concentration reduction by fen-
tanyl. Anesthesiology 78:864–869, 1993.
75. Katoh T, Kobayashi S, Suzuki A, et al: The effect of
fentanyl on sevoflurane requirements for somatic
and sympathetic responses to surgical incision.
Anesthesiology 90:398–405, 1999.
76. Glass PS, Gan TJ, Howell S, Ginsberg B: Drug inte-
ractions: Volatile anesthetics and opioids. J Clin
Anesth 9:18s–22s, 1997.
77. Johansen JW, Schneider G, Windsor AM, Sebel PS:
Esmolol potentiates reduction of minimum alveolar
isoflurane concentration by alfentanil.Anesth Analg
87:671–676, 1998.
78. Inagaki Y, Tsuda Y: Contribution of the spinal cord
to arousal from inhaled anesthesia: Comparison of
epidural and intravenous fentanyl on awakening
concentration of isoflurane. Anesth Analg 85:1387–
1393, 1997.
79. Kissin I, Vinik HR, Castillo R, Bradley EL Jr: Alfen-
tanil potentiates midazolam-induced unconscious-
ness in subanalgesic doses. Anesth Analg 71:65–69,
1990.
80. Katoh T, Nakajima Y, Moriwaki G, et al: Sevoflu-
rane requirements for tracheal intubation with
and without fentanyl. Br J Anaesth 82:561–565,
1999.
81. Lysakowski C, Dumont L, Pellegrini M, et al: Effects
of fentanyl, alfentanil, remifentanil and sufentanil
on loss of consciousness and bispectral index during
propofol induction of anaesthesia. Br J Anaesth
86:523–527, 2001.
82. Koitabashi T, Johansen JW, Sebel PS: Remifentanil
dose/electroencephalogram bispectral response
during combined propofol/regional anesthesia.
Anesth Analg 94:1530–1533, 2002.
83. Kern SE, Xie G, White JL, Egan TD: A response
surface analysis of propofol-remifentanil pharma-
codynamic interaction in volunteers. Anesthesio-
logy 100:1373–1381, 2004.
84. Streisand JB, Bailey PL, LeMaire L, et al: Fentanyl-
induced rigidity and unconsciousness in human
volunteers. Incidence, duration, and plasma con-
centrations. Anesthesiology 78:629–634, 1993.
85. Jhaveri R, Joshi P, Batenhorst R, et al: Dose compa-
rison of remifentanil and alfentanil for loss of cons-
ciousness. Anesthesiology 87:253–259, 1997.
86. Chi OZ, Sommer W, Jasaitis D: Power spectral
analysis of EEG during sufentanil infusion in
humans. Can J Anaesth 38:275–280, 1991.
87. Gambus PL, Gregg KM, Shafer SL: Validation of the
alfentanil canonical univariate parameter as a
measure of opioid effect on the electroencephalo-
gram. Anesthesiology 83:747–756, 1995.
88. Egan TD,Minto CF,Hermann DJ,et al: Remifentanil
versus alfentanil: Comparative pharmacokinetics
and pharmacodynamics in healthy adult male
volunteers. Anesthesiology 84:821–833, 1996.
89. Scott JC, Cooke JE, Stanski DR: Electroencephalo-
graphic quantitation of opioid effect: Comparative
pharmacodynamics of fentanyl and sufentanil.
Anesthesiology 74:34–42, 1991.
90. Westmoreland CL, Sebel PS, Gropper A: Fentanyl or
alfentanil decreases the minimum alveolar anesthe-
tic concentration of isoflurane in surgical patients.
Anesth Analg 78:23–28, 1994.
91. Brunner MD, Braithwaite P, Jhaveri R, et al: MAC
reduction of isoflurane by sufentanil. Br J Anaesth
72:42–46, 1994.
92. Lang E, Kapila A, Shlugman D, et al: Reduction of
isoflurane minimal alveolar concentration by remi-
fentanil. Anesthesiology 85:721–728, 1996.
93. Langeron O, Lille F, Zerhouni O, et al: Comparison
of the effects of ketamine-midazolam with those of
fentanyl-midazolam on cortical somatosensory
evoked potentials during major spine surgery. Br J
Anaesth 78:701–706, 1997.
94. Crabb I, Thornton C, Konieczko KM, et al: Remi-
fentanil reduces auditory and somatosensory
evoked responses during isoflurane anaesthesia in a
dose-dependent manner. Br J Anaesth 76:795–801,
1996.
95. Haenggi M, Ypparila H, Takala J, et al: Measuring
depth of sedation with auditory evoked potentials
during controlled infusion of propofol and remifen-
tanil in healthy volunteers. Anesth Analg 99:1728–
1736, 2004.
96. Kalkman CJ, Drummond JC, Ribberink AA, et al:
Effects of propofol, etomidate, midazolam, and fen-
tanyl on motor evoked responses to transcranial
electrical or magnetic stimulation in humans.Anes-
thesiology 76:502–509, 1992.
97. Kawaguchi M, Sakamoto T, Ohnishi H, et al: Intra
operativemyogenicmotorevokedpotentials induced
by direct electrical stimulation of the exposed motor
cortex under isoflurane and sevoflurane. Anesth
Analg 82:593–599, 1996.
98. Wright DR, Thornton C, Hasan K, et al: The effect
of remifentanil on the middle latency auditory
evoked response and haemodynamic measurements
with and without the stimulus of orotracheal intu-
bation. Eur J Anaesthesiol 21:509–516, 2004.
99. Thorogood MC, Armstead WM: Influence of poly
ethylene glycol superoxide dismutase/catalase on
altered opioid-induced pial artery dilation after
brain injury. Anesthesiology 84:614–625, 1996.
100. Monitto CL, Kurth CD: The effect of fentanyl, sufen-
tanil, and alfentanil on cerebral arterioles in piglets.
Anesth Analg 76:985–989, 1993.
101. Adler LJ, Gyulai FE, Diehl DJ, et al: Regional brain
activity changes associated with fentanyl analgesia
elucidated by positron emission tomography.
Anesth Analg 84:120–126, 1997.
102. Werner C, Hoffman WE, Baughman VL, et al:
Effects of sufentanil on cerebral blood flow, cerebral
blood flow velocity, and metabolism in dogs.Anesth
Analg 72:177–181, 1991.
103. Milde LN, Milde JH, Gallagher WJ: Effects of sufen-
tanil on cerebral circulation and metabolism in
dogs. Anesth Analg 70:138–146, 1990.
104. Mayer N, Weinstabl C, Podreka I, Spiss CK: Sufen-
tanil does not increase cerebral blood flow in
healthy human volunteers. Anesthesiology 73:240–
243, 1990.
105. Mayberg TS, Lam AM, Eng CC, et al: The effect of
alfentanil on cerebral blood flow velocity and intra-
cranial pressure during isoflurane–nitrous oxide
anesthesia in humans. Anesthesiology 78:288–294,
1993.
106. Hoffman WE, Cunningham F, James MK, et al:
Effects of remifentanil, a new short-acting opioid, on
cerebral blood flow, brain electrical activity, and
intracranial pressure in dogs anesthetized with iso-
flurane and nitrous oxide. Anesthesiology 79:
107–113, 1993.
107. Wagner KJ, Willoch F, Kochs EF, et al: Dose-depen-
dent regional cerebral blood flow changes during
remifentanil infusion in humans: A positron emis-
sion tomography study.Anesthesiology 94:732–739,
2001.
108. Ostapkovich ND, Baker KZ, Fogarty-Mack P, et al:
Cerebral blood flow and CO
2
reactivity is similar
during remifentanil/N
2
O and fentanyl/N
2
O anes-
thesia. Anesthesiology 89:358–363, 1998.
109. Kofke WA, Garman RH, Tom WC, et al: Alfentanil-
induced hypermetabolism, seizure, and histopatho-
logy in rat brain. Anesth Analg 75:953–964, 1992.
110. KofkeWA,Attaallah AF, Kuwabara H, et al: The neu-
ropathologic effects in rats and neurometabolic
effects in humans of large-dose remifentanil.Anesth
Analg 94:1229–1236, 2002.
582
Farmacología y anestesia
II