Table of Contents Table of Contents
Previous Page  582 / 2894 Next Page
Information
Show Menu
Previous Page 582 / 2894 Next Page
Page Background

55. Nishi M, Houtani T, Noda Y, et al: Unrestrained

nociceptive response and disregulation of hearing

ability in mice lacking the nociceptin/orphanin FQ

receptor. EMBO J 16:1858–1864, 1997.

56. Koster A, Montkowski A, Schulz S, et al: Targeted

disruption of the orphanin FQ/nociceptin gene

increases stress susceptibility and impairs stress

adaptation in mice. Proc Natl Acad Sci U S A

96:10444–10449, 1999.

57. Yamamoto T, Sakashita Y: The role of the spinal

opioid receptor like1 receptor, the NK-1 receptor,

and cyclooxygenase-2 in maintaining postoperative

pain in the rat. Anesth Analg 89:1203–1208, 1999.

58. Grisel JE, Mogil JS, Belknap JK, Grandy DK: Orpha-

nin FQ acts as a supraspinal, but not a spinal, anti-

opioid peptide. Neuroreport 7:2125–2129, 1996.

59. Pan Z, Hirakawa N, Fields HL: A cellular mecha-

nism for the bidirectional pain-modulating actions

of orphanin FQ/nociceptin. Neuron 26:515–522,

2000.

60. Portenoy RK, Foley KM, Inturrisi CE: The nature of

opioid responsiveness and its implications for neu-

ropathic pain: New hypotheses derived from studies

of opioid infusions. Pain 43:273–286, 1990.

61. Morgan D, Cook CD, Smith MA, Picker MJ: An

examination of the interactions between the antino-

ciceptive effects of morphine and various

m

-opioids:

The role of intrinsic efficacy and stimulus intensity.

Anesth Analg 88:407–413, 1999.

62. Perrot S, Guilbaud G, Kayser V: Differential beha-

vioral effects of peripheral and systemic morphine

and naloxone in a rat model of repeated acute infla-

mmation. Anesthesiology 94:870–875, 2001.

63. Kest B, Sarton E, Dahan A: Gender differences in

opioid-mediated analgesia: Animal and human

studies. Anesthesiology 93:539–547, 2000.

64. Sarton E, Olofsen E, Romberg R, et al: Sex differen-

ces in morphine analgesia: An experimental study

in healthy volunteers.Anesthesiology 93:1245–1254,

discussion 1246A, 2000.

65. Gupta A, Bodin L, Holmstrom B, Berggren L: A

systematic review of the peripheral analgesic effects

of intraarticular morphine. Anesth Analg 93:761–

770, 2001.

66. Kapral S, Gollmann G, Waltl B, et al: Tramadol

added to mepivacaine prolongs the duration of an

axillary brachial plexus blockade. Anesth Analg

88:853–856, 1999.

67. Nishikawa K, Kanaya N, Nakayama M, et al: Fen-

tanyl improves analgesia but prolongs the onset of

axillary brachial plexus block by peripheral mecha-

nism. Anesth Analg 91:384–387, 2000.

68. Bouaziz H, Kinirons BP, Macalou D, et al: Sufentanil

does not prolong the duration of analgesia in a

mepivacaine brachial plexus block: A dose response

study. Anesth Analg 90:383–387, 2000.

69. Latta KS, Ginsberg B, Barkin RL: Meperidine: A cri-

tical review. Am J Ther 9:53–68, 2002.

70. Osman NI, Baghdoyan HA, Lydic R: Morphine

inhibits acetylcholine release in rat prefrontal cortex

when delivered systemically or by microdialysis to

basal forebrain. Anesthesiology 103:779–787, 2005.

71. Philbin DM, Rosow CE, Schneider RC, et al: Fen-

tanyl and sufentanil anesthesia revisited: How much

is enough? Anesthesiology 73:5–11, 1990.

72. Michelsen LG, Salmenpera M, Hug CC Jr, et al:

Anesthetic potency of remifentanil in dogs. Anes-

thesiology 84:865–872, 1996.

73. Steffey EP: Isoflurane-sparing effect of fentanyl in

swine. Relevance and importance. Anesthesiology

83:446–448, 1995.

74. McEwan AI, Smith C, Dyar O, et al: Isoflurane

minimum alveolar concentration reduction by fen-

tanyl. Anesthesiology 78:864–869, 1993.

75. Katoh T, Kobayashi S, Suzuki A, et al: The effect of

fentanyl on sevoflurane requirements for somatic

and sympathetic responses to surgical incision.

Anesthesiology 90:398–405, 1999.

76. Glass PS, Gan TJ, Howell S, Ginsberg B: Drug inte-

ractions: Volatile anesthetics and opioids. J Clin

Anesth 9:18s–22s, 1997.

77. Johansen JW, Schneider G, Windsor AM, Sebel PS:

Esmolol potentiates reduction of minimum alveolar

isoflurane concentration by alfentanil.Anesth Analg

87:671–676, 1998.

78. Inagaki Y, Tsuda Y: Contribution of the spinal cord

to arousal from inhaled anesthesia: Comparison of

epidural and intravenous fentanyl on awakening

concentration of isoflurane. Anesth Analg 85:1387–

1393, 1997.

79. Kissin I, Vinik HR, Castillo R, Bradley EL Jr: Alfen-

tanil potentiates midazolam-induced unconscious-

ness in subanalgesic doses. Anesth Analg 71:65–69,

1990.

80. Katoh T, Nakajima Y, Moriwaki G, et al: Sevoflu-

rane requirements for tracheal intubation with

and without fentanyl. Br J Anaesth 82:561–565,

1999.

81. Lysakowski C, Dumont L, Pellegrini M, et al: Effects

of fentanyl, alfentanil, remifentanil and sufentanil

on loss of consciousness and bispectral index during

propofol induction of anaesthesia. Br J Anaesth

86:523–527, 2001.

82. Koitabashi T, Johansen JW, Sebel PS: Remifentanil

dose/electroencephalogram bispectral response

during combined propofol/regional anesthesia.

Anesth Analg 94:1530–1533, 2002.

83. Kern SE, Xie G, White JL, Egan TD: A response

surface analysis of propofol-remifentanil pharma-

codynamic interaction in volunteers. Anesthesio-

logy 100:1373–1381, 2004.

84. Streisand JB, Bailey PL, LeMaire L, et al: Fentanyl-

induced rigidity and unconsciousness in human

volunteers. Incidence, duration, and plasma con-

centrations. Anesthesiology 78:629–634, 1993.

85. Jhaveri R, Joshi P, Batenhorst R, et al: Dose compa-

rison of remifentanil and alfentanil for loss of cons-

ciousness. Anesthesiology 87:253–259, 1997.

86. Chi OZ, Sommer W, Jasaitis D: Power spectral

analysis of EEG during sufentanil infusion in

humans. Can J Anaesth 38:275–280, 1991.

87. Gambus PL, Gregg KM, Shafer SL: Validation of the

alfentanil canonical univariate parameter as a

measure of opioid effect on the electroencephalo-

gram. Anesthesiology 83:747–756, 1995.

88. Egan TD,Minto CF,Hermann DJ,et al: Remifentanil

versus alfentanil: Comparative pharmacokinetics

and pharmacodynamics in healthy adult male

volunteers. Anesthesiology 84:821–833, 1996.

89. Scott JC, Cooke JE, Stanski DR: Electroencephalo-

graphic quantitation of opioid effect: Comparative

pharmacodynamics of fentanyl and sufentanil.

Anesthesiology 74:34–42, 1991.

90. Westmoreland CL, Sebel PS, Gropper A: Fentanyl or

alfentanil decreases the minimum alveolar anesthe-

tic concentration of isoflurane in surgical patients.

Anesth Analg 78:23–28, 1994.

91. Brunner MD, Braithwaite P, Jhaveri R, et al: MAC

reduction of isoflurane by sufentanil. Br J Anaesth

72:42–46, 1994.

92. Lang E, Kapila A, Shlugman D, et al: Reduction of

isoflurane minimal alveolar concentration by remi-

fentanil. Anesthesiology 85:721–728, 1996.

93. Langeron O, Lille F, Zerhouni O, et al: Comparison

of the effects of ketamine-midazolam with those of

fentanyl-midazolam on cortical somatosensory

evoked potentials during major spine surgery. Br J

Anaesth 78:701–706, 1997.

94. Crabb I, Thornton C, Konieczko KM, et al: Remi-

fentanil reduces auditory and somatosensory

evoked responses during isoflurane anaesthesia in a

dose-dependent manner. Br J Anaesth 76:795–801,

1996.

95. Haenggi M, Ypparila H, Takala J, et al: Measuring

depth of sedation with auditory evoked potentials

during controlled infusion of propofol and remifen-

tanil in healthy volunteers. Anesth Analg 99:1728–

1736, 2004.

96. Kalkman CJ, Drummond JC, Ribberink AA, et al:

Effects of propofol, etomidate, midazolam, and fen-

tanyl on motor evoked responses to transcranial

electrical or magnetic stimulation in humans.Anes-

thesiology 76:502–509, 1992.

97. Kawaguchi M, Sakamoto T, Ohnishi H, et al: Intra­

operativemyogenicmotorevokedpotentials induced

by direct electrical stimulation of the exposed motor

cortex under isoflurane and sevoflurane. Anesth

Analg 82:593–599, 1996.

98. Wright DR, Thornton C, Hasan K, et al: The effect

of remifentanil on the middle latency auditory

evoked response and haemodynamic measurements

with and without the stimulus of orotracheal intu-

bation. Eur J Anaesthesiol 21:509–516, 2004.

99. Thorogood MC, Armstead WM: Influence of poly­

ethylene glycol superoxide dismutase/catalase on

altered opioid-induced pial artery dilation after

brain injury. Anesthesiology 84:614–625, 1996.

100. Monitto CL, Kurth CD: The effect of fentanyl, sufen-

tanil, and alfentanil on cerebral arterioles in piglets.

Anesth Analg 76:985–989, 1993.

101. Adler LJ, Gyulai FE, Diehl DJ, et al: Regional brain

activity changes associated with fentanyl analgesia

elucidated by positron emission tomography.

Anesth Analg 84:120–126, 1997.

102. Werner C, Hoffman WE, Baughman VL, et al:

Effects of sufentanil on cerebral blood flow, cerebral

blood flow velocity, and metabolism in dogs.Anesth

Analg 72:177–181, 1991.

103. Milde LN, Milde JH, Gallagher WJ: Effects of sufen-

tanil on cerebral circulation and metabolism in

dogs. Anesth Analg 70:138–146, 1990.

104. Mayer N, Weinstabl C, Podreka I, Spiss CK: Sufen-

tanil does not increase cerebral blood flow in

healthy human volunteers. Anesthesiology 73:240–

243, 1990.

105. Mayberg TS, Lam AM, Eng CC, et al: The effect of

alfentanil on cerebral blood flow velocity and intra-

cranial pressure during isoflurane–nitrous oxide

anesthesia in humans. Anesthesiology 78:288–294,

1993.

106. Hoffman WE, Cunningham F, James MK, et al:

Effects of remifentanil, a new short-acting opioid, on

cerebral blood flow, brain electrical activity, and

intracranial pressure in dogs anesthetized with iso-

flurane and nitrous oxide. Anesthesiology 79:

107–113, 1993.

107. Wagner KJ, Willoch F, Kochs EF, et al: Dose-depen-

dent regional cerebral blood flow changes during

remifentanil infusion in humans: A positron emis-

sion tomography study.Anesthesiology 94:732–739,

2001.

108. Ostapkovich ND, Baker KZ, Fogarty-Mack P, et al:

Cerebral blood flow and CO

2

reactivity is similar

during remifentanil/N

2

O and fentanyl/N

2

O anes-

thesia. Anesthesiology 89:358–363, 1998.

109. Kofke WA, Garman RH, Tom WC, et al: Alfentanil-

induced hypermetabolism, seizure, and histopatho-

logy in rat brain. Anesth Analg 75:953–964, 1992.

110. KofkeWA,Attaallah AF, Kuwabara H, et al: The neu-

ropathologic effects in rats and neurometabolic

effects in humans of large-dose remifentanil.Anesth

Analg 94:1229–1236, 2002.

582

Farmacología y anestesia

II