Table of Contents Table of Contents
Previous Page  1206 / 2894 Next Page
Information
Show Menu
Previous Page 1206 / 2894 Next Page
Page Background

92. Strauss JM, Krohn S, Sümpelmann R, et al: Evalua-

tion of two electrochemical monitors for measure-

mentof inhalednitricoxide.Anaesthesia51:151–154,

1996.

93. Bernareggi M,Cremona G: Measurement of exhaled

nitric oxide in humans and animals. Pulm Pharma-

col Ther 12:331–352, 1999.

94. Etches PC, Harris ML, McKinley R, Finer NN: Clini-

cal monitoring of inhaled nitric oxide: Comparison

of chemiluminescent and electrochemical sensors.

Biomed Instrum Technol 29:134–140, 1995.

95. Roller C, Namjou K, Jeffers J, et al: Simultaneous NO

and CO

2

measurement in human breath with a

single IV-VI mid-infrared laser. Opt Lett 27:107–

109, 2002.

96. Nishimura M, Imanaka H, Uchiyama A, et al: Nitric

oxide (NO) measurement accuracy. J Clin Monit

13:241–248, 1997.

97. Shibutani K, Muraoka M, Shirasaki S, et al: Do

changes in end-tidal Pco

2

quantitatively reflect

changes in cardiac output? Anesth Analg 79:829–

833, 1994.

98. Tavernier B,Rey D,Thevenin D,et al: Can prolonged

expiration manoeuvres improve the prediction of

arterial Pco

2

from end-tidal Pco

2

? Br J Anaesth

78:536–540, 1997.

99. Bhavani-Shankar K, Kumar AY, Moseley HS,Ahyee-

Hallsworth R: Terminology and the current limita-

tions of time capnography: A brief review. J Clin

Monit 11:175–182, 1995.

100. Rich GF, Sconzo JM: Continuous end-tidal CO

2

sampling within the proximal endotracheal tube

estimates arterial CO

2

tension in infants. Can J

Anaesth 38:201–203, 1991.

101. Bhavani-Shankar K: Negative arterial to end-tidal

CO

2

gradients in children. Can J Anaesth 41:1125–

1126, 1994.

102. Kwetny I, Finucane BT: Negative arterial to end-tidal carbon dioxide gradient: An additional sign of

malignant hyperthermia during desflurane anesthe-

sia. Anesth Analg 102:815–817, 2006.

103. Breen PH, Mazumdar B, Skinner SC: Comparison

of end-tidal Pco

2

and average alveolar expired Pco

2

during positive end-expiratory pressure. Anesth

Analg 82:368–373, 1996.

104. Fletcher R: Relationship between alveolar deadspace

and arterial oxygenation in children with con­

genital cardiac disease. Br J Anaesth 62:168–176,

1989.

105. Breen PH, Bradley PJ: Carbon dioxide spirogram

(but not capnogram) detects leaking inspiratory

valve in a circle circuit.Anesth Analg 85:1372–1376,

1997.

106. Verschuren F, Heinonen E, Clause D, et al: Volume-

tric capnography as a bedside monitoring of throm-

bolysis in major pulmonary embolism. Intensive

Care Med 30:2129–2132, 2004.

107. Sanders AB: Capnometry in emergency medicine.

Ann Emerg Med 18:1287–1290, 1989.

108. Ranieri VM, Suter PM, Tortorella C, et al: Effect of

mechanical ventilation on inflammatory mediators

in patients with acute respiratory distress syndrome:

A randomized controlled trial. JAMA 282:54–61,

1999.

109. Ventilation with lower tidal volumes as compared

with traditional tidal volumes for acute lung injury

and the acute respiratory distress syndrome. The

Acute Respiratory Distress Syndrome Network. N

Engl J Med 3421301-1308, 2000.

110. Muscedere JG, Mullen JB, Gan K, Slutsky AS: Tidal

ventilation at low airway pressures can augment

lung injury. Am J Respir Crit Care Med 149:1327–

1334, 1994.

111. Amato MB, Barbas CS, Medeiros DM, et al: Effect

of a protective-ventilation strategy on mortality in

the acute respiratory distress syndrome. N Engl J

Med 338:347–354, 1998.

112. Maggiore SM, Jonson B, Richard JC, et al: Alveolar

derecruitment at decremental positive end-expira-

tory pressure levels in acute lung injury: Compari-

son with the lower inflection point, oxygenation,

and compliance. Am J Respir Crit Care Med

164:795–801, 2001.

113. Rimmensberger PC, Pristine G, Mullen BM, et al:

Lung recruitment during small tidal volume venti-

lation allows minimal positive end-expiratory pres-

sure without augmenting lung injury. Crit Care Med

27:1940–1945, 1999.

114. Roupie E, Dambrosio M, Servillao G, et al: Titration

of tidal volume and induced hypercapnia in acute

respiratory distress syndrome. Am J Respir Crit

Care Med 152:121–128, 1995.

115. Hickling KG: Best compliance during a decremen-

tal, but not incremental, positive end-expiratory

pressure trial is related to open-lung positive end-

expiratory pressure: A mathematical model of acute

respiratory distress syndrome lungs. Am J Respir

Crit Care Med 163:69–78, 2001.

116. Marini JJ, Gattinoni L: Ventilatory management of

acute respiratory distress syndrome: A consensus of

two. Crit Care Med 32:250–255, 2004.

117. Mergoni M, Volpi A, Bricchi C, Rossi A: Lower

inflection point and recruitment with PEEP in ven-

tilated patients with acute respiratory failure. J Appl

Physiol 91:441–450, 2001.

118. van Genderingen HR, van Vught AJ, Duval EL, et al:

Attenuation of pressure swings along the endotra-

cheal tube is indicative of optimal distending pres-

sure during high-frequency oscillatory ventilation

in a model of acute lung injury. Pediatr Pulmonol

33:429–436, 2002.

119. Tingay DG, Mills JF, Morley CJ, et al: The deflation

limb of the pressure-volume relationship in infants

during high-frequency ventilation.Am J Respir Crit

Care Med 173:414–420, 2006.

120. Suh GY, Koh Y, Chung MP, et al: Repeated dere-

cruitments accentuate lung injury during mechani-

cal ventilation. Crit Care Med 30:1848–1853, 2002.

121. Fujino Y, Goddon S, Dolhnikoff M, et al: Repetitive

high-pressure recruitment maneuvers required to

maximally recruit lung in a sheep model of acute

respiratory distress syndrome. Crit Care Med 29:

1579–1586, 2001.

122. Ranieri VM, Giuliani R, Fiore T, et al: Volume-pres-

sure curve of the respiratory system predicts effects

of PEEP in ARDS: “Occlusion” versus “constant

flow” technique. Am J Respir Crit Care Med 149:

19–27, 1994.

123. Albaiceta GM, Piacentini E, Villagrá A, et al: Appli-

cation of continuous positive airway pressure to

trace static pressure-volume curves of the respira-

tory system. Crit Care Med 31:2514–2519, 2003.

124. Suter PM, Fairley B, Isenberg MD: Optimum end-

expiratory airway pressure in patients with acute

pulmonary failure. N Engl J Med 292:284–289,

1975.

125. Gunnarsson L, Tokics L, Gustavsson H, Hedens-

tierna G: Influence of age on atelectasis formation

and gas exchange impairment during general anaes-

thesia. Br J Anaesth 66:423–432, 1991.

126. Tokics L, Hedenstierna G, Strandberg A, et al: Lung

collapse and gas exchange during general anesthesia:

Effects of spontaneous breathing, muscle paralysis,

and positive end-expiratory pressure. Anesthesio-

logy 66:157–167, 1987.

127. Pelosi P, Ravagnan I, Giurati G, et al: Positive end-

expiratory pressure improves respiratory function

in obese but not in normal subjects during anesthe-

sia and paralysis. Anesthesiology 91:1221–1231,

1999.

128. Tusman G, Böhm SH, Vazquez de Anda GF, et al:

Alveolar recruitment strategy improves arterial oxy-

genation during general anaesthesia. Br J Anaesth

82:8–13, 1999.

129. Dyhr T, Laursen N, Larsson A: Effects of lung

recruitment maneuver and positive end-expiratory

pressure on lung volume, respiratory mechanics and

alveolar gas mixing in patients ventilated after

cardiac surgery. Acta Anaesthesiol Scand 46:717–

725, 2002.

130. Papadakos PJ, Lachmann B: The open lung concept

of alveolar recruitment can improve outcome in

respiratory failure and ARDS.Mt Sinai J Med 69:73–

77, 2002.

131. Grasso S, Mascia L, Del Turco M, et al: Effects of

recruiting maneuvers in patients with acute respira-

tory distress syndrome ventilated with protective ven-

tilatory strategy. Anesthesiology 96:795–802, 2002.

132. Schreiter D, Reske A, Stichert B, et al: Alveolar

recruitment in combination with sufficient positive

end-expiratory pressure increases oxygenation and

lung aeration in patients with severe chest trauma.

Crit Care Med 32:968–975, 2004.

133. Talmor D, Sarge T, Legedza A, et al: Cytokine release

following recruitment maneuvers. Chest 132:1434–

1439, 2007.

134. Reis Miranda D, Klompe L, Mekel J, et al: Open lung

ventilation does not increase right ventricular

outflow impedance: An echo-Doppler study. Crit

Care Med 34:2555–2560, 2006.

135. Gattinoni L, Caironi P, Valenza F, Carlesso E: The

role of CT-scan studies for the diagnosis and therapy

of acute respiratory distress syndrome. Clin Chest

Med 27:559–570, 2006.

136. Gattinoni L, Caironi P, Cressoni M, et al: Lung

recruitment in patients with the acute respiratory dis-

tress syndrome. N Engl J Med 354:1775–1786, 2006.

137. Levy MM: PEEP in ARDS—how much is enough?

N Engl J Med 351:389–391, 2004.

138. Gattinoni L, Caironi P, Pelosi P, Goodman LR: What

has computed tomography taught us about the

acute respiratory distress syndrome? Am J Respir

Crit Care Med 164:1701–1711, 2001.

139. van Genderingen HR, van Vught AJ, Jansen JR: Esti-

mation of regional volume changes by electrical

impedance pressure tomography during a pressure-

volume maneuver. Intensive Care Med 29:233–240,

2003.

140. Frerichs I, Dargaville PA, Dudykevych T, Rimens-

berger PC: Electrical impedance tomography: A

method for monitoring regional lung aeration and

tidal volume distribution. Intensive Care Med

29:2312–2316, 2003.

141. Gattinoni L, D’Andrea L, Pelosi P, et al: Regional

effects and mechanism of positive end-expiratory

pressure in early respiratory distress syndrome.

JAMA 269:2122–2127, 1993.

142. Victorino JA, Borges JB, Okamato VN, et al: Imba-

lances in regional lung ventilation: A validation

study on electrical impedance tomography. Am J

Respir Crit Care Med 169:791–800, 2004.

143. Kacmarek RM, Cycyk-Chapman MC, Young-Pala-

zzo PJ, Romagnoli DM: Comparison of two techni-

ques for the determination of maximal inspiratory

pressure (MIP) in mechanically ventilated patients.

Respir Care 39:868–878, 1989.

144. Yang KL, Tobin MJ: A prospective study of indexes

predicting the outcome of trials of weaning from

mechanical ventilation. N Engl J Med 324:1445–

1450, 1991.

145. Stewart TE: Establishing an approach to mechanical

ventilation. Can Respir J 3:403–408, 1996.

146. Benditt JO: Esophageal and gastric pressure measu-

rements. Respir Care 50:68–75, 2005, discussion

75-77.

147. Roussos C,Zakynthinos S: Fatigue of the respiratory

muscles. Intensive Care Med 22:134–155, 1996.

148. Bellani G, Patroniti N, Weismann D, et al: Measure-

ment of pressure-time product during spontaneous

assisted breathing by rapid interrupter technique.

Anesthesiology 106:484–490, 2007.

149. Pesenti A, Pelosi P, Foti G, et al: An interrupter tech-

nique for measuring respiratory mechanics and the

pressure generated by respiratory muscles during

partial ventilatory support. Chest 102:918–923,

1992.

150. Wysocki M, Brunner JX: Closed-loop ventilation:

An emerging standard of care? Crit Care Clin

23:223–240, ix, 2007.

151. Arnal JM, Nafati C, Wysocki M, et al: Utilization of

adaptive support ventilation (ASV) in a polyvalent

intensive care unit [abstract]. Intensive Care Med

30:S84, 2004.

152. Catley DM,Thornton C,Jordan C,et al: Pronounced,

episodic oxygen desaturation in the postoperative

period: Its association with ventilatory pattern and

analgesic regimen. Anesthesiology 63:20–28, 1985.

153. Nilsson L, Johansson A, Kalman S: Monitoring of

respiratory rate in postoperative care using a new

1206

Control de la anestesia

III