1. Quanjer PH, Tammeling GJ, Cotes JE, et al: Lung
volumes and forced ventilatory flows. Report
Working Party “Standardization of Lung Function
Tests.” European Community for Steel and Coal.
Eur Respir J Suppl 16:5–40, 1993.
2. Astrom E, Niklason L, Drefeldt B, et al: Partitioning
of dead space—a method and reference values in
the awake human. Eur Respir J 16:659–664, 2000.
3. Broughton SJ,Sylvester KP,Page CM,et al: Problems
in the measurement of functional residual capacity.
Physiol Meas 27:99–107, 2006.
4. Hogg K, Dawson D, Tabor T, et al: Respiratory dead
space measurement in the investigation of pulmo-
nary embolism in outpatients with pleuritic chest
pain. Chest 128:2195–2202, 2005.
5. Wilschut FA, van der Grinten CPM, Lamers RJS, et
al: Intrapulmonary gas mixing and the sloping
alveolar plateau in COPD patients with macrosco-
pic emphysema. Eur Respir J 14:166–171, 1999.
6. Roca J, Burgos F, Barbera JA, et al: Prediction equa-
tions for plethysmographic lung volumes. Respir
Med 92:454–460, 1998.
7. Pellegrino R, Brusasco V: On the causes of lung
hyperinflation during bronchoconstriction. Eur
Respir J 10:468–475, 1997.
8. Leith D, Mead J: Mechanisms determining residual
volume of the lungs in normal subjects. J Appl
Physiol 23:221–227, 1967.
9. Grassino AE, Roussos C: Static properties of the
lung and chest wall.
In
Crystal RG, West JB, Weibel
ER, Barnes PJ (eds): The Lung: Scientific Founda-
tions,,2nd ed.Philadelphia,Lippincott-Raven,1997,
pp 1187–1202.
10. Goldin JG: Quantitative CT of the lung. Radiol Clin
North Am 40:145–162, 2002.
11. Van-Lith P, Johnson FN, Sharp JT: Respiratory elas-
tances in relaxed and paralyzed states in normal and
abnormal men. J Appl Physiol 23:475–486, 1967.
12. Pedley TJ, Kamm RD: Dynamics of gas flow and
pressure-flow relationships.
In
Crystal RG, West JB,
Weibel ER, Barnes PJ (eds): The Lung: Scientific
Foundations,, 2nd ed. Philadelphia, Lippincott-
Raven, 1997, pp 1365–1380.
13. Slats AM, Janssen K, van Schadewijk A, et al: Bron-
chial inflammation and airway responses to deep
inspiration in asthma and chronic obstructive pul-
monary disease. Am J Respir Crit Care Med
176:121–128, 2007.
14. Holst M, Striem J, Hedenstierna G: Errors in tra-
cheal pressure recording in patients with a tra-
cheostomy tube—a model study. Intensive Care
Med 16:384–389, 1990.
15. Verbeken EK, Cauberghs M, Mertens I, et al: Tissue
and airway impedance of excised normal, senile,
and emphysematous lungs. J Appl Physiol 72:2343–
2353, 1992.
16. Tantucci C, Corbeil C, Chasse M, et al: Flow and
volume dependence of respiratory system flow
resistance in patients with adult respiratory-distress
syndrome. Am Rev Respir Dis 145:355–360, 1992.
17. Frostell C, Pande J, Hedenstierna G: Effects of high
frequency breathing on pulmonary ventilation and
gas exchange. J Appl Physiol 55:1374–1378, 1983.
18. Milic Emili J: Ventilation distribution.
In
Hammid
Q, Shannon J, Martin J (eds): Physiologic Bases of
Respiratory Disease. Hamilton, Ontario, BC Decker,
2005, pp 133–141.
19. Guy HJB, Prisk GK, Elliott AR, et al: Inhomogeneity
of pulmonary ventilation during sustained micro-
gravity as determined by single-breath washouts. J
Appl Physiol 76:1719–1729, 1994.
20. Prisk GK: Physiology of a microgravity environ-
ment, microgravity and the lung. J Appl Physiol
89:385–396, 2000.
21. Ganesan S, Lai-Fook S: Finite element analysis of
regional lung expansion in prone and supine posi-
tions: Effect of heart weight and diaphragmatic
compliance. Physiologist 32:191, 1989.
22. Mayo JR, MacKay AL, Whittall KP, et al: Measure-
ment of lung water content and pleural pressure
gradient with magnetic resonance imaging.J Thorac
Imaging 10:73–81, 1995.
23. Petersson J, Sánchez-Crespo A, Rohdin M, et al:
Physiological evaluation of a new quantitative
SPECT method measuring regional ventilation and
perfusion. J Appl Physiol 96:1127–1136, 2004.
24. Bake B, Wood L, Murphy B, et al: Effect of inspira-
tory flow-rate on regional distribution of inspired
gas. J Appl Physiol 37:8–17, 1974.
25. Milic-Emili J, Torchio R, D’Angelo E: Closing
volume: A reappraisal (1967-2007). Eur J Appl
Physiol 99:567–583, 2007.
26. Teculescu DB,Damel MC,Costantino E,et al: Com-
puterized single-breath nitrogen washout: Predic-
ted values in a rural French community. Lung
174:43–55, 1996.
27. Nield MA, Hoo GWS, Roper JM, et al: Efficacy of
pursed-lips breathing—a breathing pattern retrai-
ning strategy for dyspnea reduction. J Cardiopulm
Rehabil Prev 27:237–244, 2007.
28. Mead J, Turner JM, Macklem PT, Little JB: Signifi-
cance of relationship between lung recoil and
maximum expiratory flow. J Appl Physiol 22:95–
108, 1967.
29. Haefeli-Bleuer B, Weibel ER: Morphometry of the
human pulmonary acinus. Anat Rec 220:401–414,
1988.
30. Adaro F, Piiper J: Limiting role of stratification in
alveolar exchange of oxygen.Respir Physiol 26:195–
206, 1976.
31. West JB: Respiratory Physiology—The Essentials,,
4th ed. Baltimore, Williams & Wilkins, 1990.
32. Hughes JMB, Bates DV: Historical review: The
carbon monoxide diffusing capacity (D
LCO
) and its
membrane (D-M) and red cell (Theta v˙) compo-
nents. Respir Physiol Neurobiol 138:115–142, 2003.
33. Dawson CA, Linehan JH: Dynamics of blood flow
and pressure-flow relationships.
In
Crystal RG,West
JB, Weibel ER, Barnes PJ (eds): The Lung: Scientific
Foundations,, 2nd ed. Philadelphia, Lippincott-Ra-
ven, 1997, pp 1503–1522.
34. Jeffery PK:Remodeling and inflammation of bronchi
in asthma and chronic obstructive pulmonary
disease. Proc Am Thorac Soc 1:176–183, 2004.
35. Hughes JMB: Distribution of pulmonary blood flow.
In
Crystal RG, West JB, Weibel ER, Barnes PJ (eds):
The Lung: Scientific Foundations,, 2nd ed. Philadel-
phia, Lippincott-Raven, 1997, pp 1523–1536.
36. Glenny RW, LammWJE, Albert RK, et al: Gravity is
a minor determinant of pulmonary blood-flow dis-
tribution. J Appl Physiol 71:620–629, 1991.
37. Dutrieue B, Paiva M,Verbanck S, et al: Tidal volume
single-breath wash-in of SF6 and CH4 in transient
microgravity. J Appl Physiol 94:75–82, 2003.
38. Glenny RW, Bernard S, Robertson HT, et al: Gravity
is an important but secondary determinant of
regional pulmonary blood flow in upright primates.
J Appl Physiol 86:623–632, 1999.
39. Hlastala MP, Bernard SL, Erickson HH, et al: Pul-
monary blood flow distribution in standing horses
is not dominated by gravity. J Appl Physiol 81:1051–
1061, 1996.
40. Hakim TS, Lisbona R, Dean GW: Gravity-indepen-
dent inequality in pulmonary blood-flow in
humans. J Appl Physiol 63:1114–1121, 1987.
41. Hedenstierna G, White FC, Wagner PD: Spatial-
distribution of pulmonary blood-flow in the dog
with peep ventilation. J Appl Physiol 47:938–946,
1979.
42. Marshall BE, Hanson CW, Frasch F, et al: Role of
hypoxic pulmonary vasoconstriction in pulmonary
gas-exchange and blood-flow distribution 2. Patho-
physiology. Intensive Care Med 20:379–389, 1994.
43. Moudgil R, Michelakis ED:Archer SL: Hypoxic pul-
monary vasoconstriction. J Appl Physiol 98:390–
403, 2005.
44. Hambraeus-Jonzon K, Bindslev L, Jolin Mellgård Å,
et al: Hypoxic pulmonary vasoconstriction in
human lungs. Anesthesiology 86:308–315, 1997.
45. Sartori C,Allemann Y, Scherrer U: Pathogenesis of pul-
monary edema: Learning from high-altitude pulmo-
nary edema. Respir Phys Neurobiol 159:338–349, 2007.
46. Roca J:Wagner PD: Contribution of multiple inert gas
elimination technique to pulmonarymedicine.1.Prin-
ciples and information content of the multiple inert
gas elimination technique. Thorax 49:815–824, 1994.
47. Agustí AG, Barberà JA: Contribution of multiple
inert gas elimination technique to pulmonary
medicine. 2. Chronic pulmonary diseases: Chronic
obstructive pulmonary disease and idiopathic pul-
monary fibrosis. Thorax 49:924–932, 1994.
48. Rodriguez-Roisin R, Roca J: Contributions of multiple
inert gas elimination technique to pulmonary medi-
cine. 3. Bronchial asthma. Thorax 49:1027–1033, 1994.
49. Agustí AG, Roca J, Gea J, et al: Mechanisms of gas-
exchange impairment in idiopathic pulmonary
fibrosis. Am Rev Respir Dis 143:219–225, 1991.
50. Manier G,CastaingY: Contribution of multiple inert
gas elimination technique to pulmonary medicine.
4. Gas exchange abnormalities in pulmonary vascu-
lar and cardiac disease. Thorax 49:1169–1174, 1994.
51. Melot C: Contribution of multiple inert gas elimi-
nation technique to pulmonary medicine. 5. Venti-
lation-perfusion relationships in acute respiratory
failure. Thorax 49:1251–1258, 1994.
52. Hedenstierna G: Contribution of multiple inert gas
elimination technique to pulmonary medicine. 6.
Ventilation-perfusion relationships during anesthe-
sia. Thorax 50:85–91, 1995.
Sueño normal
La ventilación se ve afectada por el sueñ
o 159 .Se ha descrito una
reducción significativa del V
C
y del impulso inspiratorio, y la ven-
tilación minuto disminuye aproximadamente un 5-16%, depen-
diendo de la fase del sueño, de modo que la disminución más
marcada se produce durante el sueño de movimientos oculares
rápidos (REM). El volumen pulmonar también se reduce durante
el sueño, y se manifiesta como disminución de la CR
F 160 .La dismi-
nución más marcada se produce durante el sueño REM, momento
durante el cual la disminución es de aproximadamente 0,3 l, o el
10% del valor despiert
o 161.
La disminución de la CRF durante el sueño se acompaña de
una disminución de la aireación de las regiones pulmonares infe-
riores, como se demostró en un estudio con TC en voluntarios
sano
s 162 .La pérdida de la aireación era tan marcada como en
pacientes anestesiados que respiraban gas con una concentración
moderada de oxígeno (Fio
2
de 0,3). Cuando se cambió a los pacien-
tes anestesiados a O
2
al 100% aparecieron rápidamente atelecta-
sia
s 75 .Es tentador asumir que el sueño normal mientras se respira
oxígeno puro también puede llevar a la formación de atelectasias.
Bibliografía
Fisiología respiratoria
155
5
Seccíon I
Fisiología y anestesia
© ELSEVIER. Fotocopiar sin autorización es un delito