Los bloqueos nerviosos regionales y la infiltración local
directa de la herida quirúrgica con un anestésico local de larga
duración son métodos simples pero muy eficaces para proporcio-
nar alivio del dolor en todos los niños. En la actualidad, en la
mayoría de los hospitales es raro que un paciente pediátrico des-
pierte de la anestesia sin alguna forma de bloqueo regional. Esta
práctica ha sido especialmente útil en la población ambulatoria; a
los padres se les anima a comenzar con los analgésicos cuando ellos
observan que el niño empieza a estar irritable, pero antes de la
completa reversión del bloqueo. Este método suele proporcionar
una transición suave de la anestesia general y un paciente sin dolor.
En los capítulos 41 y 43 se comenta la anestesia regional y la anal-
gesia con detalle y el
capítulo 71hace especial hincapié en
pediatría.
Bibliografía
1. Romero T, Covell J, Friedman WF: A comparison of
pressure-volume relations of the fetal, newborn, and
adult heart. Am J Physiol 222:1285–1290, 1972.
2. Kirkpatrick SE, Pitlick PT, Naliboff J, Friedman WF:
Frank-Starling relationship as an important deter-
minant of fetal cardiac output. Am J Physiol
231:495–500, 1976.
3. Keens TG, Bryan AC, Levison H, Ianuzzo CD:
Developmental pattern of muscle fiber types in
human ventilatory muscles. J Appl Physiol 44:909–
913, 1978.
4. Eckenhoff JE: Some anatomic considerations of the
infant larynx influencing endotracheal anesthesia.
Anesthesiology 12:401–410, 1951.
5. Seymour AH, PrakashN: A cadaver study tomeasure
the adult glottis and subglottis: Defining a problem
associated with the use of double-lumen tubes. J Car-
diothorac Vasc Anesth 16:196–198, 2002.
6. Bernet V, Dullenkopf A, Maino P, Weiss M: Outer
diameter and shape of paediatric tracheal tube cuffs
at higher inflation pressures. Anaesthesia 60:1123–
1128, 2005.
7. Ho AM, Aun CS, Karmakar MK: The margin of
safety associated with the use of cuffed paediatric
tracheal tubes. Anaesthesia 57:173–175, 2002.
8. Alcorn J, McNamara PJ: Ontogeny of hepatic and
renal systemic clearance pathways in infants: Part I.
Clin Pharmacokinet 41:959–998, 2002.
9. Jacqz-Aigrain E, Cresteil T: Cytochrome P450–
dependent metabolism of dextromethorphan: Fetal
and adult studies. Dev Pharmacol Ther 18:161–168,
1992.
10. Ward RM, Mirkin BL: Perinatal/neonatal pharma-
cology. In Brody TM, Larner J, Minneman KP (eds):
Human Pharmacology: Molecular-to-Clinical, 3rd
ed. St Louis, Mosby–Year Book, 1998, pp 873–883.
11. Gow PJ, Ghabrial H, Smallwood RA, et al: Neonatal
hepatic drug elimination. Pharmacol Toxicol 88:3–
15, 2001.
12. Katoh T, Ikeda K: Minimum alveolar concentration
of sevoflurane in children. Br J Anaesth 68:139–141,
1992.
13. Lerman J, Sikich N, Kleinman S, Yentis S: The phar-
macology of sevoflurane in infants and children.
Anesthesiology 80:814–824, 1994.
14. Lerman J, Robinson S, Willis MM, et al: Anesthetic
requirements for halothane in young children 0-1
month and 1-6 months of age. Anesthesiology
59:421–424, 1983.
15. Taylor RH, Lerman J: Minimum alveolar concentra-
tion of desflurane and hemodynamic responses in
neonates, infants, and children. Anesthesiology
75:975–979, 1991.
16. LeDez KM, Lerman J: The minimum alveolar con-
centration (MAC) of isoflurane in preterm neona-
tes. Anesthesiology 67:301–307, 1987.
17. Gregory GA, Eger EI II, Munson ES: The relations-
hip between age and halothane requirements in
man. Anesthesiology 30:488–491, 1969.
18. Katoh T, Ikeda K: The minimum alveolar concen-
tration (MAC) of sevoflurane in humans. Anesthe-
siology 66:301–303, 1987.
19. Nicodemus HF, Nassiri-Rahimi C, Bachman L, et al:
Median effective doses (ED
50
) of halothane in adults
and children. Anesthesiology 31:344–348, 1969.
20. Morray JP, Geiduschek JM, Ramamoorthy C, et al:
Anesthesia-related cardiac arrest in children: Initial
findings of the Pediatric Perioperative Cardiac Arrest
(POCA) Registry. Anesthesiology 93:6–14, 2000.
21. Kharasch ED, Powers KM, Artru AA: Comparison
of Amsorb, soda lime, and Baralyme degradation of
volatile anesthetics and formation of carbon
monoxide and compound A in swine in vivo. Anes-
thesiology 96:173–182, 2002.
22. Gentz BA, Malan TP Jr: Renal toxicity with sevoflu-
rane: A storm in a teacup? Drugs 61:2155–2162,
2001.
23. Bouche MP, Versichelen LF, Struys MM, et al: No
compound A formation with Superia during mini-
mal-flow sevoflurane anesthesia: A comparison
with Sofnolime. Anesth Analg 95:1680–1685, 2002.
24. Knolle E, Heinze G, Gilly H: Small carbonmonoxide
formation in absorbents does not correlate with
small carbon dioxide absorption. Anesth Analg
95:650–655, 2002.
25. Fatheree RS, Leighton BL: Acute respiratory distress
syndrome after an exothermic Baralyme-sevoflu-
rane reaction. Anesthesiology 101:531–533, 2004.
26. Wu J, Previte JP, Adler E, et al: Spontaneous ignition,
explosion, and fire with sevoflurane and barium
hydroxide lime. Anesthesiology 101:534–537, 2004.
27. Castro BA, Freedman LA, Craig WL, Lynch C III:
Explosion within an anesthesia machine: Baralyme,
high fresh gas flows and sevoflurane concentration.
Anesthesiology 101:537–539, 2004.
28. Fang ZX, Kandel L, Laster MJ, et al: Factors affecting
production of compound A from the interaction of
sevoflurane with Baralyme and soda lime. Anesth
Analg 82:775–781, 1996.
29. Frink EJ Jr, GreenWB Jr, Brown EA, et al: Compound
A concentrations during sevoflurane anesthesia in
children. Anesthesiology 84:566–571, 1996.
30. Constant I, Dubois MC, Piat V, et al: Changes in
electoencephalogram and autonomic cardiovascu-
lar activity during induction of anesthesia with
sevoflurane compared with halothane in children.
Anesthesiology 91:1604–1615, 1999.
31. Kenna JG, Neuberger J, Mieli-Vergani G, et al: Halo-
thane hepatitis in children. Br Med J (Clin Res Ed)
294:1209–1211, 1987.
32. Rolf N, Coté CJ: Persistent cardiac arrhythmias in
pediatric patients: Effects of age, expired carbon
dioxide values, depth of anesthesia, and airway
management. Anesth Analg 73:720–724, 1991.
33. Wodey E, Pladys P, Copin C, et al: Comparative
hemodynamic depression of sevoflurane versus
halothane in infants: An echocardiographic study.
Anesthesiology 87:795–800, 1997.
34. Holzman RS, van der Velde ME, Kaus SJ, et al: Sevo-
flurane depresses myocardial contractility less than
halothane during induction of anesthesia in chil-
dren. Anesthesiology 85:1260–1267, 1996.
35. Zwass MS, Fisher DM, Welborn LG, et al: Induction
and maintenance characteristics of anesthesia with
desflurane and nitrous oxide in infants and chil-
dren. Anesthesiology 76:373–378, 1992.
36. Welborn LG, Hannallah RS, Norden JM, et al: Com-
parison of emergence and recovery characteristics of
sevoflurane, desflurane, and halothane in pediatric
ambulatory patients. Anesth Analg 83:917–920, 1996.
37. Finkel JC, Cohen IT, Hannallah RS, et al: The effect
of intranasal fentanyl on the emergence characteris-
tics after sevoflurane anesthesia in children under-
going surgery for bilateral myringotomy tube
placement. Anesth Analg 92:1164–1168, 2001.
38. Fisher DM, Zwass MS: MAC of desflurane in 60%
nitrous oxide in infants and children. Anesthesio-
logy 76:354–356, 1992.
39. Murat I, Billard V, Vernois J, et al: Pharmacokinetics
of propofol after a single dose in children aged 1-3
years with minor burns. Comparison of three data
analysis approaches. Anesthesiology 84:526–532,
1996.
40. Marik PE: Propofol: Therapeutic indications and
side-effects. Curr Pharm Des 10:3639–3649, 2004.
41. Hofer KN, McCarthy MW, Buck ML, Hendrick AE:
Possible anaphylaxis after propofol in a child with
food allergy. Ann Pharmacother 37:398–401, 2003.
42. Parke TJ, Stevens JE, Rice AS, et al: Metabolic aci-
dosis and fatal myocardial failure after propofol
infusion in children: Five case reports. BMJ
305:613–616, 1992.
43. Shipton EA, Prosser DO: Mitochondrial myopa-
thies and anaesthesia. Eur J Anaesthesiol 21:173–
178, 2004.
44. De Negri P, Ivani G, Visconti C, De Vivo P: How to
prolong postoperative analgesia after caudal anaes-
thesia with ropivacaine in children:
S
-ketamine versus
clonidine. Paediatr Anaesth 11:679–683, 2001.
45. Bramwell KJ, Haizlip J, Pribble C, et al: The effect of
etomidate on intracranial pressure and systemic
blood pressure in pediatric patients with severe
traumatic brain injury. Pediatr Emerg Care 22:90–
93, 2006.
46. Sarkar M, Laussen PC, Zurakowski D, et al: Hemo-
dynamic responses to etomidate on induction of
anesthesia in pediatric patients. Anesth Analg
101:645–650, 2005.
47. Zuckerbraun NS, Pitetti RD, Herr SM, et al: Use of
etomidate as an induction agent for rapid sequence
intubation in a pediatric emergency department.
Acad Emerg Med 13:602–609, 2006.
48. Guldner G, Schultz J, Sexton P, et al: Etomidate for
rapid-sequence intubation in young children:
Hemodynamic effects and adverse events. Acad
Emerg Med 10:134–139, 2003.
49. Sokolove PE, Price DD, Okada P: The safety of eto-
midate for emergency rapid sequence intubation of
pediatric patients. Pediatr Emerg Care 16:18–21,
2000.
50. Pizarro CF, Troster EJ, Damiani D, Carcillo JA:
Absolute and relative adrenal insufficiency in chil-
dren with septic shock. Crit Care Med 33:855–859,
2005.
51. Jackson WL Jr: Should we use etomidate as an
induction agent for endotracheal intubation in
patients with septic shock? A critical appraisal.
Chest 127:1031–1038, 2005.
52. Buhrer M, Maitre PO, Crevoisier C, Stanski DR:
Electroencephalographic effects of benzodiazepi-
nes. II. Pharmacodynamic modeling of the electro-
encephalographic effects of midazolam and
diazepam. Clin Pharmacol Ther 48:555–567, 1990.
53. Jacqz-Aigrain E, Wood E, Robieux I: Pharmacoki-
netics of midazolam in critically ill neonates. Eur J
Clin Pharmacol 36:191–192, 1990.
54. Burtin P, Jacqz-Aigrain E, Girard P, et al: Population
pharmacokinetics of midazolam in neonates. Clin
Pharmacol Ther 56:615–625, 1994.
55. Coté CJ, Cohen IT, Suresh S, et al: A comparison of
three doses of a commercially prepared oral mida-
zolam syrup in children. Anesth Analg 94:37–43,
2002.
56. Olkkola KT, Aranko K, Luurila H, et al: A potentia-
lly hazardous interaction between erythromycin
and midazolam. Clin Pharmacol Ther 53:298–305,
1993.
2360
Anestesia pediátrica
V