Bibliografía
1. Wilkinson G: Pharmacokinetics: The dynamics of
drug absorption, distribution and elimination.
In
Hardman J, Limbird LE, Goodman GA (eds):
Goodman and Gilman’s The Pharmacological Basis
of Therapeutics, 10th ed. New York, McGraw-Hill,
2001.
2. Weinshilboum R: Inheritance and drug response.
N Engl J Med 348:529–537, 2003.
3. Gibson G, Skett P: Introduction to Drug Metabo-
lism. Cheltenham, UK, Stanley Thornes Publishers,
1999.
4. Krishna DR, Klotz U: Extrahepatic metabolism of
drugs in humans. Clin Pharmacokinet 26:144–160,
1994.
5. Lohr JW, Willsky GR, Acara MA: Renal drug meta-
bolism. Pharmacol Rev 50:107–141, 1998.
6. Koop DR: Oxidative and reductive metabolism by
cytochrome P450 2E1. FASEB J 6:724–730, 1992.
7. Jana S, Paliwal J: Molecular mechanisms of cyto-
chrome P450 induction: Potential for drug-drug
interactions. Curr Protein Pept Sci 8:619–628,
2007.
8. Wilkinson GR: Drug metabolism and variability
among patients in drug response. N Engl J Med
352:2211–2221, 2005.
9. Young WS, Lietman PS: Chloramphenicol glucu-
ronyl transferase: Assay, ontogeny and inducibility.
J Pharmacol Exp Ther 204:203–211, 1978.
10. Weiss CF, Glazko AJ, Weston JK: Chloramphenicol
in the newborn infant. A physiologic explanation of
its toxicity when given in excessive doses. N Engl J
Med 262:787–794, 1960.
11. Lacroix D, Sonnier M, Moncion A, et al: Expression
of CYP3A in the human liver—evidence that the
shift between CYP3A7 and CYP3A4 occurs imme-
diately after birth. Eur J Biochem 247:625–634,
1997.
12. Loughnan PM, Greenwald A, Purton WW, et al:
Pharmacokinetic observations of phenytoin dispo-
sition in the newborn and young infant. Arch Dis
Child 52:302–309, 1977.
13. Baillie TA: Metabolism and toxicity of drugs. Two
decades of progress in industrial drug metabolism.
Chem Res Toxicol 21:129–137, 2008.
14. Kalow W, Gunn DR: The relation between dose of
succinylcholine and duration of apnea in man.
J Pharmacol Exp Ther 120:203–214, 1957.
15. KalowW: The Pennsylvania State University College
of Medicine 1990 Bernard B. Brodie Lecture. Phar-
macogenetics: Past and future. Life Sci 47:1385–
1397, 1990.
16. Ingelman-Sundberg M, Oscarson M, McLellan RA:
Polymorphic human cytochrome P450 enzymes:
An opportunity for individualized drug treatment.
Trends Pharmacol Sci 20:342–349, 1999.
17. Sata F, Sapone A, Elizondo G, et al: CYP3A4 allelic
variants with amino acid substitutions in exons
7 and 12: Evidence for an allelic variant with altered
catalytic activity. Clin Pharmacol Ther 67:48–56,
2000.
18. Kuehl P, Zhang J, Lin Y, et al: Sequence diversity in
CYP3A promoters and characterization of the
genetic basis of polymorphic CYP3A5 expression.
Nat Genet 27:383–391, 2001.
19. Blum M, Grant DM, McBride W, et al: Human
arylamine
N
-acetyltransferase genes: Isolation,
chromosomal localization, and functional expres-
sion. DNA Cell Biol 9:193–203, 1990.
20. Lin HJ, Han Cy, Lin BK, Hardy S: Slow acetylator
mutations in the human polymorphic
N
-acetyl-
transferase gene in 786 Asians, blacks, Hispanics,
and whites: Application to metabolic epidemiology.
Am J Hum Genet 52:827–834, 1993.
21. Woodson LC, Weinshilboum RM: Human kidney
thiopurine methyltransferase. Purification and bio-
chemical properties. Biochem Pharmacol 32:819–
826, 1983.
22. Evans WE: Pharmacogenetics of thiopurine
S
-methyltransferase and thiopurine therapy. Ther
Drug Monit 26:186–191, 2004.
23. Bosch TM, Meijerman I, Beijnen JH, Schellens JH:
Genetic polymorphisms of drug-metabolising
enzymes and drug transporters in the chemothera-
peutic treatment of cancer. Clin Pharmacokinet
45:253–285, 2006.
24. Daly AK, King BP: Pharmacogenetics of oral anti-
coagulants. Pharmacogenetics 13:247–252, 2003.
25. Higashi MK, Veenstra DL, Kondo LM, et al: Asso-
ciation between CYP2C9 genetic variants and anti-
coagulation-related outcomes during warfarin
therapy. JAMA 287:1690–1698, 2002.
26. Rieder MJ, Reiner AP, Gage BF, et al: Effect of
VKORC1 haplotypes on transcriptional regulation
and warfarin dose. N Engl J Med 352:2285–2293,
2005.
27. Schwarz UI, Ritchie MD, Bradford Y, et al: Genetic
determinants of response to warfarin during initial
anticoagulation. N Engl J Med 358:999–1008,
2008.
28. Harris PD, Barnes R: The uses of helium and xenon
in current clinical practice.Anaesthesia 63:284–293,
2008.
29. Cullen SC, Gross EG: The anesthetic properties of
xenon in animals and human beings, with additio-
nal observations on krypton. Science 113:580–582,
1951.
30. Froeba G, Marx T, Pazhur J, et al: Xenon does not
trigger malignant hyperthermia in susceptible
swine. Anesthesiology 91:1047–1052, 1999.
31. Laitio RM, Kaisti KK, Låangsjö JW, et al: Effects of
xenon anesthesia on cerebral blood flow in humans:
A positron emission tomography study.Anesthesio-
logy 106:1128–1133, 2007.
32. Baumert JH, Hein M, Hecker KE, et al: Autonomic
cardiac control with xenon anaesthesia in patients
at cardiovascular risk. Br J Anaesth 98:722–727,
2007.
33. Zhang P, Ohara A, Mashimo T, et al: Pulmonary
resistance in dogs: A comparison of xenon with
nitrous oxide. Can J Anaesth 42:547–553, 1995.
34. Morris LE, Knott JR, Pittinger CB: Electro-encepha-
lographic and blood gas observations in human
surgical patients during xenon anesthesia. Anesthe-
siology 16:312–319, 1955.
35. Lachmann B, Armbruster S, Schairer W, et al: Safety
and efficacy of xenon in routine use as an inhalatio-
nal anaesthetic. Lancet 335:1413–1415, 1990.
36. Luttropp HH, Thomasson R, Dahm S, et al: Clinical
experience with minimal flow xenon anesthesia.
Acta Anaesthesiol Scand 38:121–125, 1994.
37. Hofland J, Gultuna I, Tenbrinck R: Xenon anaesthe-
sia for laparoscopic cholecystectomy in a patient
with Eisenmenger’s syndrome. Br J Anaesth 86:882–
886, 2001.
38. Burov NE, Molchanov IV, Nikolaev LL, Rashchup-
kin AB: [The method of low-flow xenon anesthesia].
Anesteziol Reanimatol 3:31–34, 2003.
39. Goto T, Saito H, Shinkai M, et al: Xenon provides
faster emergence from anesthesia than does nitrous
oxide–sevoflurane or nitrous oxide–isoflurane.
Anesthesiology 86:1273–1278, 1997.
40. Rossaint R, Reyle-Hahn M, Schulte AM, et al: Mul-
ticenter randomized comparison of the efficacy and
safety of xenon and isoflurane in patients under-
going elective surgery. Anesthesiology 98:6–13,
2003.
41. Goto T, Hanne P, Ishiguro Y, et al: Cardiovascular
effects of xenon and nitrous oxide in patients during
fentanyl-midazolam anaesthesia. Anaesthesia 59:
1178–1183, 2004.
42. Wappler F, Rossaint R, Baumert J, et al: Multicenter
randomized comparison of xenon and isoflurane on
left ventricular function in patients undergoing
elective surgery. Anesthesiology 106:463–471,
2007.
43. Coburn M, Baumert JH, Roertgen D, et al: Emer-
gence and early cognitive function in the elderly
after xenon or desflurane anaesthesia: A double-
blinded randomized controlled trial. Br J Anaesth
98:756–762, 2007.
44. Bein B, Turowski P, Renner J, et al: Comparison of
xenon-based anaesthesia compared with total intra-
venous anaesthesia in high risk surgical patients.
Anaesthesia 60:960–967, 2005.
45. Baumert JH, Hein M, Hecker KE, et al: Xenon or
propofol anaesthesia for patients at cardiovascular
risk in non-cardiac surgery. Br J Anaesth 100:605–
611, 2008.
46. Kharasch ED, Hankins DC, Fenstamaker K, Cox K:
Human halothane metabolism, lipid peroxidation,
and cytochromes P(450)2A6 and P(450)3A4. Eur J
Clin Pharmacol 55:853–859, 2000.
47. Kharasch ED, Hankins D, Mautz D, Thummel KE:
Identification of the enzyme responsible for oxidative
halothane metabolism: Implications for prevention
of halothane hepatitis. Lancet 347:1367–1371, 1996.
48. Garton KJ, Yuen P, Meinwald J, et al: Stereoselective
metabolism of enflurane by human liver cyto-
chrome P450 2E1. Drug Metab Dispos 23:1426–
1430, 1995.
49. Christ DD, Satoh H, Kenna JG, Pohl LR: Potential
metabolic basis for enflurane hepatitis and the
apparent cross-sensitization between enflurane
and halothane. Drug Metab Dispos 16:135–140,
1988.
50. Mazze RI, Woodruff RE, Heerdt ME: Isoniazid-
induced enflurane defluorination in humans. Anes-
thesiology 57:5–8, 1982.
51. Thummel KE, Kharasch ED, Podoll T, Kunze K:
Human liver microsomal enflurane defluorination
catalyzed by cytochrome P-450 2E1. Drug Metab
Dispos 21:350–357, 1993.
52. Kharasch ED, Thummel KE: Identification of cyto-
chrome P450 2E1 as the predominant enzyme
catalyzing human liver microsomal defluorination
of sevoflurane, isoflurane, and methoxyflurane.
Anesthesiology 79:795–807, 1993.
53. Kharasch ED, Hankins DC, Cox K: Clinical isoflu-
rane metabolism by cytochrome P450 2E1. Anes-
thesiology 90:766–771, 1999.
54. Sutton TS, Koblin DD, Gruenke LD, et al: Fluoride
metabolites after prolonged exposure of volunteers
and patients to desflurane. Anesth Analg 73:180–
185, 1991.
55. Cook TL, BeppuWJ, Hitt BA, et al: Renal effects and
metabolism of sevoflurane in Fisher 3444 rats: An
in-vivo and in-vitro comparison with methoxyflu-
rane. Anesthesiology 43:70–77, 1975.
56. Cook TL, Beppu WJ, Hitt BA, et al: A comparison
of renal effects and metabolism of sevoflurane and
methoxyflurane in enzyme-induced rats. Anesth
Analg 54:829–835, 1975.
57. Holaday DA, Smith FR: Clinical characteristics
and biotransformation of sevoflurane in healthy
human volunteers. Anesthesiology 54:100–106,
1981.
58. Kharasch ED, Karol MD, Lanni C, Sawchuk R: Cli-
nical sevoflurane metabolism and disposition. I.
Sevoflurane and metabolite pharmacokinetics.
Anesthesiology 82:1369–1378, 1995.
59. Kharasch ED,Armstrong AS, Gunn K, et al: Clinical
sevoflurane metabolism and disposition. II.The role
of cytochrome P450 2E1 in fluoride and hexafluo-
roisopropanol formation. Anesthesiology 82:1379–
1388, 1995.
428
Farmacología y anestesia
II