Table of Contents Table of Contents
Previous Page  428 / 2894 Next Page
Information
Show Menu
Previous Page 428 / 2894 Next Page
Page Background

Bibliografía

1. Wilkinson G: Pharmacokinetics: The dynamics of

drug absorption, distribution and elimination.

In

Hardman J, Limbird LE, Goodman GA (eds):

Goodman and Gilman’s The Pharmacological Basis

of Therapeutics, 10th ed. New York, McGraw-Hill,

2001.

2. Weinshilboum R: Inheritance and drug response.

N Engl J Med 348:529–537, 2003.

3. Gibson G, Skett P: Introduction to Drug Metabo-

lism. Cheltenham, UK, Stanley Thornes Publishers,

1999.

4. Krishna DR, Klotz U: Extrahepatic metabolism of

drugs in humans. Clin Pharmacokinet 26:144–160,

1994.

5. Lohr JW, Willsky GR, Acara MA: Renal drug meta-

bolism. Pharmacol Rev 50:107–141, 1998.

6. Koop DR: Oxidative and reductive metabolism by

cytochrome P450 2E1. FASEB J 6:724–730, 1992.

7. Jana S, Paliwal J: Molecular mechanisms of cyto-

chrome P450 induction: Potential for drug-drug

interactions. Curr Protein Pept Sci 8:619–628,

2007.

8. Wilkinson GR: Drug metabolism and variability

among patients in drug response. N Engl J Med

352:2211–2221, 2005.

9. Young WS, Lietman PS: Chloramphenicol glucu-

ronyl transferase: Assay, ontogeny and inducibility.

J Pharmacol Exp Ther 204:203–211, 1978.

10. Weiss CF, Glazko AJ, Weston JK: Chloramphenicol

in the newborn infant. A physiologic explanation of

its toxicity when given in excessive doses. N Engl J

Med 262:787–794, 1960.

11. Lacroix D, Sonnier M, Moncion A, et al: Expression

of CYP3A in the human liver—evidence that the

shift between CYP3A7 and CYP3A4 occurs imme-

diately after birth. Eur J Biochem 247:625–634,

1997.

12. Loughnan PM, Greenwald A, Purton WW, et al:

Pharmacokinetic observations of phenytoin dispo-

sition in the newborn and young infant. Arch Dis

Child 52:302–309, 1977.

13. Baillie TA: Metabolism and toxicity of drugs. Two

decades of progress in industrial drug metabolism.

Chem Res Toxicol 21:129–137, 2008.

14. Kalow W, Gunn DR: The relation between dose of

succinylcholine and duration of apnea in man.

J Pharmacol Exp Ther 120:203–214, 1957.

15. KalowW: The Pennsylvania State University College

of Medicine 1990 Bernard B. Brodie Lecture. Phar-

macogenetics: Past and future. Life Sci 47:1385–

1397, 1990.

16. Ingelman-Sundberg M, Oscarson M, McLellan RA:

Polymorphic human cytochrome P450 enzymes:

An opportunity for individualized drug treatment.

Trends Pharmacol Sci 20:342–349, 1999.

17. Sata F, Sapone A, Elizondo G, et al: CYP3A4 allelic

variants with amino acid substitutions in exons

7 and 12: Evidence for an allelic variant with altered

catalytic activity. Clin Pharmacol Ther 67:48–56,

2000.

18. Kuehl P, Zhang J, Lin Y, et al: Sequence diversity in

CYP3A promoters and characterization of the

genetic basis of polymorphic CYP3A5 expression.

Nat Genet 27:383–391, 2001.

19. Blum M, Grant DM, McBride W, et al: Human

arylamine

N

-acetyltransferase genes: Isolation,

chromosomal localization, and functional expres-

sion. DNA Cell Biol 9:193–203, 1990.

20. Lin HJ, Han Cy, Lin BK, Hardy S: Slow acetylator

mutations in the human polymorphic

N

-acetyl-

transferase gene in 786 Asians, blacks, Hispanics,

and whites: Application to metabolic epidemiology.

Am J Hum Genet 52:827–834, 1993.

21. Woodson LC, Weinshilboum RM: Human kidney

thiopurine methyltransferase. Purification and bio-

chemical properties. Biochem Pharmacol 32:819–

826, 1983.

22. Evans WE: Pharmacogenetics of thiopurine

S

-methyltransferase and thiopurine therapy. Ther

Drug Monit 26:186–191, 2004.

23. Bosch TM, Meijerman I, Beijnen JH, Schellens JH:

Genetic polymorphisms of drug-metabolising

enzymes and drug transporters in the chemothera-

peutic treatment of cancer. Clin Pharmacokinet

45:253–285, 2006.

24. Daly AK, King BP: Pharmacogenetics of oral anti-

coagulants. Pharmacogenetics 13:247–252, 2003.

25. Higashi MK, Veenstra DL, Kondo LM, et al: Asso-

ciation between CYP2C9 genetic variants and anti-

coagulation-related outcomes during warfarin

therapy. JAMA 287:1690–1698, 2002.

26. Rieder MJ, Reiner AP, Gage BF, et al: Effect of

VKORC1 haplotypes on transcriptional regulation

and warfarin dose. N Engl J Med 352:2285–2293,

2005.

27. Schwarz UI, Ritchie MD, Bradford Y, et al: Genetic

determinants of response to warfarin during initial

anticoagulation. N Engl J Med 358:999–1008,

2008.

28. Harris PD, Barnes R: The uses of helium and xenon

in current clinical practice.Anaesthesia 63:284–293,

2008.

29. Cullen SC, Gross EG: The anesthetic properties of

xenon in animals and human beings, with additio-

nal observations on krypton. Science 113:580–582,

1951.

30. Froeba G, Marx T, Pazhur J, et al: Xenon does not

trigger malignant hyperthermia in susceptible

swine. Anesthesiology 91:1047–1052, 1999.

31. Laitio RM, Kaisti KK, Låangsjö JW, et al: Effects of

xenon anesthesia on cerebral blood flow in humans:

A positron emission tomography study.Anesthesio-

logy 106:1128–1133, 2007.

32. Baumert JH, Hein M, Hecker KE, et al: Autonomic

cardiac control with xenon anaesthesia in patients

at cardiovascular risk. Br J Anaesth 98:722–727,

2007.

33. Zhang P, Ohara A, Mashimo T, et al: Pulmonary

resistance in dogs: A comparison of xenon with

nitrous oxide. Can J Anaesth 42:547–553, 1995.

34. Morris LE, Knott JR, Pittinger CB: Electro-encepha-

lographic and blood gas observations in human

surgical patients during xenon anesthesia. Anesthe-

siology 16:312–319, 1955.

35. Lachmann B, Armbruster S, Schairer W, et al: Safety

and efficacy of xenon in routine use as an inhalatio-

nal anaesthetic. Lancet 335:1413–1415, 1990.

36. Luttropp HH, Thomasson R, Dahm S, et al: Clinical

experience with minimal flow xenon anesthesia.

Acta Anaesthesiol Scand 38:121–125, 1994.

37. Hofland J, Gultuna I, Tenbrinck R: Xenon anaesthe-

sia for laparoscopic cholecystectomy in a patient

with Eisenmenger’s syndrome. Br J Anaesth 86:882–

886, 2001.

38. Burov NE, Molchanov IV, Nikolaev LL, Rashchup-

kin AB: [The method of low-flow xenon anesthesia].

Anesteziol Reanimatol 3:31–34, 2003.

39. Goto T, Saito H, Shinkai M, et al: Xenon provides

faster emergence from anesthesia than does nitrous

oxide–sevoflurane or nitrous oxide–isoflurane.

Anesthesiology 86:1273–1278, 1997.

40. Rossaint R, Reyle-Hahn M, Schulte AM, et al: Mul-

ticenter randomized comparison of the efficacy and

safety of xenon and isoflurane in patients under-

going elective surgery. Anesthesiology 98:6–13,

2003.

41. Goto T, Hanne P, Ishiguro Y, et al: Cardiovascular

effects of xenon and nitrous oxide in patients during

fentanyl-midazolam anaesthesia. Anaesthesia 59:

1178–1183, 2004.

42. Wappler F, Rossaint R, Baumert J, et al: Multicenter

randomized comparison of xenon and isoflurane on

left ventricular function in patients undergoing

elective surgery. Anesthesiology 106:463–471,

2007.

43. Coburn M, Baumert JH, Roertgen D, et al: Emer-

gence and early cognitive function in the elderly

after xenon or desflurane anaesthesia: A double-

blinded randomized controlled trial. Br J Anaesth

98:756–762, 2007.

44. Bein B, Turowski P, Renner J, et al: Comparison of

xenon-based anaesthesia compared with total intra-

venous anaesthesia in high risk surgical patients.

Anaesthesia 60:960–967, 2005.

45. Baumert JH, Hein M, Hecker KE, et al: Xenon or

propofol anaesthesia for patients at cardiovascular

risk in non-cardiac surgery. Br J Anaesth 100:605–

611, 2008.

46. Kharasch ED, Hankins DC, Fenstamaker K, Cox K:

Human halothane metabolism, lipid peroxidation,

and cytochromes P(450)2A6 and P(450)3A4. Eur J

Clin Pharmacol 55:853–859, 2000.

47. Kharasch ED, Hankins D, Mautz D, Thummel KE:

Identification of the enzyme responsible for oxidative

halothane metabolism: Implications for prevention

of halothane hepatitis. Lancet 347:1367–1371, 1996.

48. Garton KJ, Yuen P, Meinwald J, et al: Stereoselective

metabolism of enflurane by human liver cyto-

chrome P450 2E1. Drug Metab Dispos 23:1426–

1430, 1995.

49. Christ DD, Satoh H, Kenna JG, Pohl LR: Potential

metabolic basis for enflurane hepatitis and the

apparent cross-sensitization between enflurane

and halothane. Drug Metab Dispos 16:135–140,

1988.

50. Mazze RI, Woodruff RE, Heerdt ME: Isoniazid-

induced enflurane defluorination in humans. Anes-

thesiology 57:5–8, 1982.

51. Thummel KE, Kharasch ED, Podoll T, Kunze K:

Human liver microsomal enflurane defluorination

catalyzed by cytochrome P-450 2E1. Drug Metab

Dispos 21:350–357, 1993.

52. Kharasch ED, Thummel KE: Identification of cyto-

chrome P450 2E1 as the predominant enzyme

catalyzing human liver microsomal defluorination

of sevoflurane, isoflurane, and methoxyflurane.

Anesthesiology 79:795–807, 1993.

53. Kharasch ED, Hankins DC, Cox K: Clinical isoflu-

rane metabolism by cytochrome P450 2E1. Anes-

thesiology 90:766–771, 1999.

54. Sutton TS, Koblin DD, Gruenke LD, et al: Fluoride

metabolites after prolonged exposure of volunteers

and patients to desflurane. Anesth Analg 73:180–

185, 1991.

55. Cook TL, BeppuWJ, Hitt BA, et al: Renal effects and

metabolism of sevoflurane in Fisher 3444 rats: An

in-vivo and in-vitro comparison with methoxyflu-

rane. Anesthesiology 43:70–77, 1975.

56. Cook TL, Beppu WJ, Hitt BA, et al: A comparison

of renal effects and metabolism of sevoflurane and

methoxyflurane in enzyme-induced rats. Anesth

Analg 54:829–835, 1975.

57. Holaday DA, Smith FR: Clinical characteristics

and biotransformation of sevoflurane in healthy

human volunteers. Anesthesiology 54:100–106,

1981.

58. Kharasch ED, Karol MD, Lanni C, Sawchuk R: Cli-

nical sevoflurane metabolism and disposition. I.

Sevoflurane and metabolite pharmacokinetics.

Anesthesiology 82:1369–1378, 1995.

59. Kharasch ED,Armstrong AS, Gunn K, et al: Clinical

sevoflurane metabolism and disposition. II.The role

of cytochrome P450 2E1 in fluoride and hexafluo-

roisopropanol formation. Anesthesiology 82:1379–

1388, 1995.

428

Farmacología y anestesia

II