Table of Contents Table of Contents
Previous Page  431 / 2894 Next Page
Information
Show Menu
Previous Page 431 / 2894 Next Page
Page Background

181. Green T, Odum J, Nash JA, Foster JR: Perchlo-

roethylene-induced rat kidney tumors: An investi-

gation of the mechanisms involved and their

relevance to humans. Toxicol Appl Pharmacol

103:77–89, 1990.

182. Iyer RA, Frink EJ Jr, Ebert TJ,Anders MW: Cysteine

conjugate beta-lyase–dependent metabolism of

compound A (2-(fluoromethoxy)-1,1,3,3,3-penta-

fluoro-1-propene) in human subjects anesthetized

with sevoflurane and in rats given compound A.

Anesthesiology 88:611–618, 1998.

183. Iyer RA, Baggs RB, Anders MW: Nephrotoxicity of

the glutathione and cysteine

S

-conjugates of the

sevofluranedegradationproduct2-(fluoromethoxy)-

1,1,3,3,3-pentafluoro-1-propene (compound A) in

male Fischer 344 rats. J Pharmacol Exp Ther

283:1544–1551, 1997.

184. Kharasch ED, Thorning D, Garton K, et al: Role of

renal cysteine conjugate beta-lyase in the mecha-

nism of compound A nephrotoxicity in rats. Anes-

thesiology 86:160–171, 1997.

185. Martin JL, Laster MJ, Kandel L, et al: Metabolism of

compound A by renal cysteine-

S

-conjugate beta-

lyase is not the mechanism of compound A–indu-

ced renal injury in the rat.AnesthAnalg 82:770–774,

1996.

186. Kharasch ED, Hoffman GM, Thorning D, et al: Role

of the renal cysteine conjugate beta-lyase pathway

in inhaled compound A nephrotoxicity in rats.

Anesthesiology 88:1624–1633, 1998.

187. Altuntas TG, Park SB, Kharasch ED: Sulfoxidation

of cysteine and mercapturic acid conjugates of the

sevoflurane degradation product fluoromethyl-2,2-

difluoro-1-(trifluoromethyl)vinyl ether (compound

A). Chem Res Toxicol 17:435–445, 2004.

188. Higuchi H, Adachi Y, Wada H, et al: The effects of

low-flow sevoflurane and isoflurane anesthesia on

renal function in patients with stable moderate renal

insufficiency. Anesth Analg 92:650–655, 2001.

189. Conzen PF, Kharasch ED, Czerner SF, et al: Low-

flow sevoflurane compared with low-flow isoflurane

anesthesia in patients with stable renal insufficiency.

Anesthesiology 97:578–584, 2002.

190. Eger EI 2nd, Ionescu P, Laster MJ, et al: Quantitative

differences in the production and toxicity of

CF2=BrCl versus CH2F-O-C(=CF2)(CF3) (com-

pound A): The safety of halothane does not indicate

the safety of sevoflurane. Anesth Analg 85:1164–

1170, 1997.

191. Moon RE: Cause of CO poisoning, relation to halo-

genated agents still not clear. J Clin Monit 11:67–71,

1995.

192. Woehlck HJ, Dunning M 3rd, Connolly LA: Reduc-

tion in the incidence of carbon monoxide exposures

in humans undergoing general anesthesia.Anesthe-

siology 87:228–234, 1997.

193. Berry PD, Sessler DI, Larson MD: Severe carbon

monoxide poisoning during desflurane anesthesia.

Anesthesiology 90:613–616, 1999.

194. Lentz RE: Carbon monoxide poisoning during

anesthesia poses puzzles. J Clin Monit 11:66–67,

1995.

195. Baum J, Sachs G, vd Driesch C, Stanke HG: Carbon

monoxide generation in carbon dioxide absorbents.

Anesth Analg 81:144–146, 1995.

196. Davies MW, Potter FA: Carbon monoxide, soda

lime and volatile agents. Anaesthesia 51:90, 1996.

197. StrumDP,Eger EI 2nd: The degradation,absorption,

and solubility of volatile anesthetics in soda lime

depend on water content.Anesth Analg 78:340–348,

1994.

198. Wissing H, Kuhn I,Warnken U, Dudziak R: Carbon

monoxide production from desflurane, enflurane,

halothane, isoflurane, and sevoflurane with dry

soda lime. Anesthesiology 95:1205–1212, 2001.

199. Baxter PJ, Garton K, Kharasch ED: Mechanistic

aspects of carbon monoxide formation from volatile

anesthetics. Anesthesiology 89:929–941, 1998.

200. Stabernack CR, Brown R, Laster MJ, et al: Absor-

bents differ enormously in their capacity to produce

compound A and carbon monoxide. Anesth Analg

90:1428–1435, 2000.

201. Murray JM, Renfrew CW, Bedi A, et al: Amsorb: A

new carbon dioxide absorbent for use in anesthetic

breathing systems. Anesthesiology 91:1342–1348,

1999.

202. Dunning MB, 3rd, Bretscher LE, Arain SR, et al:

Sevoflurane breakdown produces flammable con-

centrations of hydrogen. Anesthesiology 106:144–

148, 2007.

203. Fatheree RS, Leighton BL: Acute respiratory distress

syndrome after an exothermic Baralyme-sevoflu-

rane reaction. Anesthesiology 101:531–533, 2004.

204. Castro BA, Freedman LA, Craig WL, Lynch C 3rd:

Explosion within an anesthesia machine: Baralyme,

high fresh gas flows and sevoflurane concentration.

Anesthesiology 101:537–539, 2004.

205. Holak EJ, Mei DA, Dunning MB 3rd, et al: Carbon

monoxide production from sevoflurane breakdown:

Modeling of exposures under clinical conditions.

Anesth Analg 96:757–764, 2003.

206. Keijzer C, Perez RS, de Lange JJ: Compound A and

carbon monoxide production from sevoflurane and

seven different types of carbon dioxide absorbent in

a patient model. Acta Anaesthesiol Scand 51:31–37,

2007.

207. Marini F, Bellugi I, Gambi D, et al: Compound A,

formaldehyde and methanol concentrations during

low-flow sevoflurane anaesthesia: Comparison of

three carbon dioxide absorbers. Acta Anaesthesiol

Scand 51:625–632, 2007.

208. Shulman RM, Geraghty TJ, Tadros M: A case of

unusual substance abuse causing myeloneuropathy.

Spinal Cord 45:314–317, 2007.

209. Iwata K, O’Keefe GB, Karanas A: Neurologic pro-

blems associated with chronic nitrous oxide abuse

in a non-healthcare worker. Am J Med Sci 322:173–

174, 2001.

210. El Otmani H, El Moutawakil B, Moutaouakil F,

et al: [Postoperative dementia: Toxicity of nitrous

oxide]. Encephale 33:95–97, 2007.

211. Cohen Aubart F, Sedel F, Vicart S, et al: [Nitric

oxide–triggered neurological disorders in subjects

with vitamin B

12

deficiency]. Rev Neurol (Paris)

163:362–364, 2007.

212. Sethi NK, Mullin P, Torgovnick J, Capasso G:

Nitrous oxide “whippit” abuse presenting with

cobalamin responsive psychosis. J Med Toxicol

2:71–74, 2006.

213. Hayes MF, Sacco AG, Savoy-Moore RT, et al: Effect

of general anesthesia on fertilization and cleavage of

human oocytes in vitro. Fertil Steril 48:975–981,

1987.

214. Critchlow BM, Ibrahim Z, Pollard BJ: General

anaesthesia for gamete intra-fallopian transfer. Eur

J Anaesthesiol 8:381–384, 1991.

215. Rosen MA, Roizen MF, Eger EI, et al: The effect of

nitrous oxide on in vitro fertilization success rate.

Anesthesiology 67:42–44, 1987.

216. Gonen O, Shulman A, Ghetler Y, et al: The impact

of different types of anesthesia on in vitro fertiliza-

tion–embryo transfer treatment outcome. J Assist

Reprod Genet 12:678–682, 1995.

217. Ebi K, Rice S: Reproductive and development toxi-

city of anesthetics in humans.

In

Rice S,Fish K (eds):

Anesthetic Toxicity. New York, Raven Press,

1994, p 175.

218. Rowland AS, Baird DD, Shore DL, et al: Nitrous

oxide and spontaneous abortion in female dental

assistants. Am J Epidemiol 141:531–538, 1995.

219. Fujinaga M, Baden JM, Shepard TH, Mazze RI:

Nitrous oxide alters body laterality in rats. Terato-

logy 41:131–135, 1990.

220. Baden JM, Fujinaga M: Effects of nitrous oxide on

day 9 rat embryos grown in culture. Br J Anaesth

66:500–503, 1991.

221. Fujinaga M, Maze M, Hoffman BB, Baden JM: Acti-

vation of alpha-1 adrenergic receptors modulates

the control of left/right sidedness in rat embryos.

Dev Biol 150:419–421, 1992.

222. Fujinaga M, Hoffman BB, Baden JM: Receptor

subtype and intracellular signal transduction

pathway associated with situs inversus induced by

alpha 1 adrenergic stimulation in rat embryos. Dev

Biol 162:558–567, 1994.

223. Soriano SG, Loepke AW: Let’s not throw the baby

out with the bath water: Potential neurotoxicity of

anesthetic drugs in infants and children. J Neuro-

surg Anesthesiol 17:207–209, 2005.

224. Anand KJ: Anesthetic neurotoxicity in newborns:

Should we change clinical practice? Anesthesiology

107:2–4, 2007.

225. Mellon RD, Simone AF, Rappaport BA: Use of anes-

thetic agents in neonates and young children.

Anesth Analg 104:509–520, 2007.

226. Gascon E, Klauser P, Kiss JZ, Vutskits L: Potentially

toxic effects of anaesthetics on the developing

central nervous system. Eur J Anaesthesiol 24:213–

224, 2007.

227. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al:

Early exposure to common anesthetic agents causes

widespread neurodegeneration in the developing

rat brain and persistent learning deficits. J Neurosci

23:876–882, 2003.

228. Walker K, Holland AJ, Winlaw D, et al: Neurodeve-

lopmental outcomes and surgery in neonates. J Pae-

diatr Child Health 42:749–751, 2006.

229. Chacko J, Ford WD, Haslam R: Growth and neuro-

developmental outcome in extremely-low-birth-

weight infants after laparotomy. Pediatr Surg Int

15:496–499, 1999.

230. Surgery and the tiny baby. Sensorineural outcome

at 5 years of age. The Victorian Infant Collaborative

Study Group. J Paediatr Child Health 32167-172,

1996.

231. Kabra NS, Schmidt B, Roberts RS, et al: Neurosen-

sory impairment after surgical closure of patent

ductus arteriosus in extremely low birth weight

infants: Results from the Trial of Indomethacin Pro-

phylaxis in Preterms. J Pediatr 150:229–234, 2007,

234.

232. Bohnen N, Warner MA, Kokman E, Kurland LT:

Early and midlife exposure to anesthesia and age of

onset of Alzheimer’s disease. Int J Neurosci 77:181–

185, 1994.

233. Eckenhoff RG, Johansson JS, Wei H, et al: Inhaled

anesthetic enhancement of amyloid-beta oligomeri-

zation and cytotoxicity. Anesthesiology 101:703–

709, 2004.

234. Xie Z, Dong Y, Maedu U, et al: The inhalation anes-

thetic isoflurane induces a vicious cycle of apoptosis

and amyloid beta-protein accumulation. J Neurosci

27:1247–1254, 2007.

235. Sessler DI, Badgwell JM: Exposure of postoperative

nurses to exhaled anesthetic gases. Anesth Analg

87:1083–1088, 1998.

236. McGregor DG, Senjem DH, Mazze RI: Trace nitrous

oxide levels in the postanesthesia care unit. Anesth

Analg 89:472–475, 1999.

237. Byhahn C, Wilke HJ, Westphal K: Occupational

exposure to volatile anaesthetics: Epidemiology and

approaches to reducing the problem. CNS Drugs

15:197–215, 2001.

238. Shuhaiber S, Einarson A, Radde IC, et al: A pros-

pective-controlled study of pregnant veterinary staff

exposed to inhaled anesthetics and x-rays. Int J

Occup Med Environ Health 15:363–373, 2002.

239. Krenzischek DA, Schaefer J, Nolan M, et al: Phase

I collaborative pilot study: Waste anesthetic gas

levels in the PACU. J Perianesth Nurs 17:227–239,

2002.

240. Sardas S, Cuhruk H, Karakaya AE,Atakurt Y: Sister-

chromatid exchanges in operating room personnel.

Mutat Res 279:117–120, 1992.

Anestésicos inhalatorios: metabolismo y toxicidad

431

14

Sección II

Farmacología y anestesia

© ELSEVIER. Fotocopiar sin autorización es un delito