31. Javaheri S: Effects of acetazolamide on cerebrospinal
fluid ions in metabolic alkalosis in dogs. J Appl
Physiol 62:1582–1588, 1987.
32. Rodriguez-Soriano J: New insights into the pathoge-
nesis of renal tubular acidosis—from functional to
molecular studies. Pediatr Nephrol 14:1121–1136,
2000.
33. Choate KA, Kahle KT, Wilson FH, et al: WNK1, a
kinase mutated in inherited hypertension with
hyperkalemia, localizes to diverse Cl
−
-transporting
epithelia. Proc Natl Acad Sci U S A 100:663–668,
2003.
34. Shaer AJ: Inherited primary renal tubular hypokale-
mic alkalosis: A review of Gitelman and Bartter syn-
dromes. Am J Med Sci 322:316–332, 2001.
35. Severinghaus JW: Acid-base balance nomogram—a
Boston-Copenhagen detente.Anesthesiology 45:539–
541, 1976.
36. Singer RB,Hastings AB:An improved clinical method
for the estimation of disturbances of the acid-base
balance of human blood. Medicine 10:242, 1948.
37. Siggaard-Andersen O: The van Slyke equation. Scand
J Clin Lab Invest Suppl 37:15–20, 1977.
38. Schlichtig R, Grogono AW, Severinghaus JW: Human
Paco
2
and standard base excess compensation for
acid-base imbalance. Crit Care Med 26:1173–1179,
1998.
39. Emmett M, Narins RG: Clinical use of the anion gap.
Medicine (Baltimore) 56:38–54, 1977.
40. Salem MM, Mujais SK: Gaps in the anion gap. Arch
Intern Med 152:1625–1629, 1992.
41. Wilkes P: Hypoproteinemia, strong-ion difference,
and acid-base status in critically ill patients. J Appl
Physiol 84:1740–1748, 1998.
42. Martin M, Murray J, Berne T, et al: Diagnosis of acid-
base derangements and mortality prediction in the
trauma intensive care unit: The physiochemical
approach. J Trauma 58:238–243, 2005.
43. Kaplan LJ, Kellum JA: Initial pH, base deficit, lactate,
anion gap, strong ion difference, and strong ion gap
predict outcome from major vascular injury. Crit
Care Med 32:1120–1124, 2004.
44. Morgan TJ, Cowley DM, Weier SL, Venkatesh B: Sta-
bility of the strong ion gap versus the anion gap over
extremes of Pco
2
and pH. Anaesth Intensive Care
35:370–373, 2007.
45. BalasubramanyanN,Havens PL,Hoffman GM:Unmea-
sured anions identified by the Fencl-Stewart method
predict mortality better than base excess, anion gap, and
lactate in patients in the pediatric intensive care unit.Crit
Care Med 27:1577–1581, 1999.
46. Kaplan LJ, Kellum JA: Comparison of acid base models
for prediction of hospital mortality following trauma.
Shock 29:662–666, 2007.
47. Moviat M, Terpstra AM, Ruitenbeek W, et al: Contribu-
tion of various metabolites to the “unmeasured” anions
in critically ill patients withmetabolic acidosis.Crit Care
Med 36:752–758, 2008.
48. Baranov D, Neligan P: Trauma and aggressive homeos-
tasis management.Anesthesiol Clin 25:49–63, 2007, viii.
49. Gilfix BM, Bique M, Magder S: A physical chemical
approach to the analysis of acid-base balance in the cli-
nical setting. J Crit Care 8:187–197, 1993.
50. Story DA, Morimatsu H, Bellomo R: Strong ions, weak
acids and base excess:A simplified Fencl-Stewart appro-
ach to clinical acid-base disorders. Br. J Anaesth 92:54–
60, 2004.
51. RehmMO,Scheingraber S,Kreimeier U,et al:Acid-base
changes caused by 5% albumin versus 6% hydroxyethyl
starch solution in patients undergoing acute normovo-
lemic hemodilution: A randomized prospective study.
Anesthesiology 93:1174–1183, 2000.
52. Prough D,White R: Acidosis associated with periopera-
tive saline administration: Dilution or delusion? Anes-
thesiology 93:1167–1169, 2000.
53. Garella S,Chang BS,Kahn SI: Dilution acidosis and con-
traction alkalosis: Review of a concept. Kidney Int
8:279–283, 1975.
54. Kellum JA: Saline-induced hyperchloremic metabolic
acidosis. Crit Care Med 30:259–261, 2002.
55. Morgan TJ, Venkatesh B, Hall J: Crystalloid strong ion
difference determines metabolic acid-base change
during in vitro hemodilution. Crit Care Med 30:157–
160, 2002.
56. Tournadre JP,Allaouchiche B, Malbert CH, Chassard D:
Metabolic acidosis and respiratory acidosis impair
gastro-pyloric motility in anesthetized pigs. Anesth
Analg 90:74–79, 2000.
57. Hansen PB, Jensen BL, Skott O: Chloride regulates
afferent arteriolar contraction in response to depola-
rization. Hypertension 32:1066–1070, 1998.
58. Wilcox CS: Regulation of renal blood flow by plasma
chloride. J Clin Invest 71:726–735, 1983.
59. Wilkes NJ, Woolf R, Mutch M, et al: The effects of
balanced versus saline-based hetastarch and crysta-
lloid solutions on acid-base and electrolyte status and
gastric mucosal perfusion in elderly surgical patients.
Anesth Analg 93:811–816, 2001.
60. Williams EL, Hildebrand KL, McCormick SA, Bedel
MJ: The effect of intravenous lactated Ringer’s solu-
tion versus 0.9% sodium chloride solution on serum
osmolality in human volunteers. Anesth Analg
88:999–1003, 1999.
61. Merten GJ, Burgess WP, Gray LV, et al: Prevention of
contrast-induced nephropathy with sodium bicarbo-
nate: A randomized controlled trial. JAMA 291:2328–
2334, 2004.
62. Tayar J, Jabbour G, Saggi SJ: Severe hyperosmolar
metabolic acidosis due to a large dose of intravenous
lorazepam. N Engl J Med 346:1253–1254, 2002.
63. Rocktaschel J, Morimatsu H, Uchino S, et al: Impact
of continuous veno-venous bypass on acid-base
balance. Int J Artif Organs 26:19–25, 2003.
64. Waters J, Gottlieb A, Schoenwald P, Popovich M:
Normal saline versus lactated Ringer’s solution for
intraoperative fluid management in patients under-
going abdominal aortic aneurysm
repair:Anoutcome
study. Anesth Analg 93:817–822, 2001.
65. Kim JY, Lee D, Lee KC, et al: Stewart’s physicochemi-
cal approach in neurosurgical patients with hyper-
chloremic metabolic acidosis during propofol
anesthesia. J Neurosurg Anesthesiol 20:1–7, 2008.
66. Moon P, Kramer GC: Hypertonic saline-dextran
resuscitation from hemorrhagic shock induces tran-
sient mixed acidosis. Crit Care Med 23:323–331,
1995.
1338
Control de la anestesia
III