36. Sonner JM, Antognini JF, Dutton RC, et al: Inhaled
anesthetics and immobility: Mechanisms, mysteries,
and minimum alveolar anesthetic concentration.
Anesth Analg 97:718–740, 2003.
37. Crick F, Koch C: A framework for consciousness.
Nat Neurosci 6:119–126, 2003.
38. Searle JR: Consciousness. Annu Rev Neurosci
23:557–578, 2000.
39. Mashour GA:Integrating the science of consciousness
and anesthesia. Anesth Analg 103:975–982, 2006.
40. Angel A: Central neuronal pathways and the process
of anesthesia. Br J Anesth 71:148–163, 1993.
41. Ries CR, Puil E: Mechanism of anesthesia revealed
by shunting actions of isoflurane on thalamocortical
neurons. J Neurophysiol 81:1795–1801, 1999.
42. Detsch O, Vahle-Hinz C, Kochs E, et al: Isoflurane
induces dose-dependent changes of thalamic soma-
tosensory information transfer. Brain Res 829:
77–89, 1999.
43. Alkire MT, Haier RJ, Fallon JH: Toward a unified
theory of narcosis: Brain imaging evidence for a
thalamocortical switch as the neurophysiologic
basis of anesthetic-induced unconsciousness [see
comments]. Conscious Cogn 9:370–386, 2000.
44. John ER, Prichep LS, Kox W, et al: Invariant reversi-
ble QEEG effects of anesthetics. Conscious Cogn
10:165–183, 2001.
45. Veselis RA: Anesthesia—a descent or a jump into
the depths? Conscious Cogn 10:230–235, 2001.
46. Chortkoff BS, Eger EI 2nd, Crankshaw DP, et al:
Concentrations of desflurane and propofol that
suppress response to command in humans. Anesth
Analg 81:737–743, 1995.
47. Dwyer R, Bennett HL, Eger EI 2nd, et al: Effects of
isoflurane and nitrous oxide in subanesthetic con-
centrations on memory and responsiveness in
volunteers. Anesthesiology 77:888–898, 1992.
48. Hudetz AG: Suppressing consciousness: Mecha-
nisms of general anesthesia. Semin Anesth 25:196–
204, 2006.
49. Tononi G: An information integration theory of
consciousness. BMC Neurosci 5:42, 2004.
50. Varela F, Lachaux JP, Rodriguez E, et al: The bra-
inweb: Phase synchronization and large-scale inte-
gration. Nat Rev Neurosci 2:229–239, 2001.
51. Massimini M, Ferraretti F, Huber R, et al: Break-
down of cortical effective connectivity during sleep.
Science 309:2228–2232, 2005.
52. Mashour GA: Consciousness unbound—Toward a
paradigm of general anesthesia. Anesthesiology
100:428–433, 2004.
53. Lydic R, Biebuyck JF: Sleep neurobiology: Relevance
for mechanistic studies of anaesthesia. Br J Anaesth
72:506–508, 1994.
54. Imas OA, Ropella KM,Ward BD, et al: Volatile anes-
thetics enhance flash-induced gamma oscillations
in rat visual cortex. Anesthesiology 102:937–947,
2005.
55. Imas OA, Ropella KM, Wood JD, et al: Isoflurane
disrupts anteroposterior phase synchronization of
flash-induced field potentials in the rat. Neurosci
Lett 402:216–221, 2006.
56. Perouansky M, Hentschke H, Perkins M, et al:
Amnesic concentrations of the nonimmobilizer 1,2-
dichlorohexafluorocyclobutane (F6, 2N) and isoflu-
rane alter hippocampal theta oscillations in vivo.
Anesthesiology 106:1168–1176, 2007.
57. Ter Mikaelian M, Sanes DH, Semple MN: Transfor-
mation of temporal properties between auditory
midbrain and cortex in the awake Mongolian gerbil.
J Neurosci 27:6091–6102, 2007.
58. Dutton RC, Maurer AJ, Sonner JM, et al: The con-
centration of isoflurane required to suppress lear-
ningdependsonthetypeof learning.Anesthesiology
94:514–519, 2001.
59. Alkire MT, Nathan SV: Does the amygdala mediate
anesthetic-induced amnesia? Basolateral amygdala
lesions block sevoflurane-induced amnesia. Anes-
thesiology 102:754–760, 2005.
60. Alkire MT, Gorski LA: Relative amnesic potency of
five inhalational anesthetics follows the Meyer-
Overton rule. Anesthesiology 101:417–429, 2004.
61. Vertes RP: Hippocampal theta rhythm: A tag for
short-term memory. Hippocampus 15:923–935,
2005.
62. PanWX,McNaughton N: The medial supramammi-
llary nucleus, spatial learning and the frequency of
hippocampal theta activity. Brain Res 764:101–108,
1997.
63. Robbe D, Montgomery SM, Thome A, et al: Canna-
binoids reveal importance of spike timing coordina-
tion in hippocampal function. Nat Neurosci
9:1526–1533, 2006.
64. Seidenbecher T,Laxmi TR,Stork O,et al:Amygdalar
and hippocampal theta rhythm synchronization
during fear memory retrieval. Science 301:846–850,
2003.
65. Pryor KO, Murphy E, Reinsel RA, et al: Heteroge-
neous effects of intravenous anesthetics on modula-
tory memory systems in humans. Anesthesiology:
107., 2007.
66. Rudolph U, Crestani F, Benke D, et al: Benzodiaze-
pine actions mediated by specific gamma-aminobu-
tyric acid(A) receptor subtypes.Nature 401:796–800,
1999.
67. Kandel L, Chortkoff BS, Sonner J, et al: Nonanesthe-
tics can suppress learning. Anesth Analg 82:321–
326, 1996.
68. Mihic SJ, McQuilkin SJ, Eger EI 2nd, et al: Potentia-
tion of gamma-aminobutyric acid type A receptor–
mediated chloride currents by novel halogenated
compounds correlates with their abilities to induce
general anesthesia. Mol Pharmacol 46:851–857,
1994.
69. Zarnowska ED, Pearce RA, Saad AA, et al: The
gamma-subunit governs the susceptibility of recom-
binant gamma-aminobutyric acid type A receptors
to block by the nonimmobilizer 1,2-dichlorohexa-
fluorocyclobutane (F6, 2N). Anesth Analg 101:401–
406, 2005.
70. Jevtovic-Todorovic V, Todorovic SM, Mennerick S,
et al: Nitrous oxide (laughing gas) is an NMDA
antagonist, neuroprotectant and neurotoxin. Nat
Med 4:460–463, 1998.
71. Mennerick S, Jevtovic-Todorovic V, Todorovic SM,
et al: Effect of nitrous oxide on excitatory and inhi-
bitory synaptic transmission in hippocampal cultu-
res. J Neurosci 18:9716–9726, 1998.
72. Gruss M, Bushell TJ, Bright DP, et al: Two-pore-
domain K
+
channels are a novel target for the anes-
thetic gases xenon, nitrous oxide, and cyclopropane.
Mol Pharmacol 65:443–452, 2004.
73. Gries DA, Condouris GA, Shey Z, et al: Anxiolytic-
like action in mice treated with nitrous oxide and
oral triazolam or diazepam. Life Sci 76:1667–1674,
2005.
74. Nelson LE, Lu J, Guo T, et al: The alpha-2-adreno-
receptor agonist dexmedetomidine converges on
an endogenous sleep-promoting pathway to exert
its sedative effects. Anesthesiology 98:428–436,
2003.
75. Lydic R: Sleep and anesthesia.
In
Hemmings HC Jr.,
Hopkins PM (eds): Foundations of Anesthesia, 2nd
ed. London, Elsevier, 2006, pp 373–383.
76. Tung A, Bergmann BM, Herrera S, et al: Recovery
from sleep deprivation occurs during propofol anes-
thesia. Anesthesiology 100:1419–1426, 2004.
77. Hentschke H, Schwarz C, Antkowiak B: Neocor-
tex is the major target of sedative concentrations
of volatile anaesthetics: Strong depression of
firing rates and increase of GABA
A
receptor-
mediated inhibition. Eur J Neurosci 21:93–102,
2005.
78. Perouansky M: Liaisons dangereuses? General
anaesthetics and long-term toxicity in the CNS. Eur
J Anaesthesiol 24:107–115, 2007.
79. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al:
Early exposure to common anesthetic agents causes
widespread neurodegeneration in the developing
rat brain and persistent learning deficits. J Neurosci
23:876–882, 2003.
80. Slikker W Jr, Zou X, Hotchkiss CE, et al: Ketamine-
induced neuronal cell death in the perinatal rhesus
monkey. Toxicol Sci 98:145–158, 2007.
81. Culley DJ, Raghavan SV,Waly M, et al: Nitrous oxide
decreases cortical methionine synthase transiently
but produces lasting memory impairment in aged
rats. Anesth Analg 105:83–88, 2007.
82. Wan Y, Xu J, Ma D, et al: Postoperative impairment
of cognitive function in rats: A possible role for
cytokine-mediated inflammation in the hippocam-
pus. Anesthesiology 106:436–443, 2007.
83. Kitano H, Kirsch JR, Hurn PD, et al: Inhalational
anesthetics as neuroprotectants or chemical precon-
ditioning agents in ischemic brain. J Cereb Blood
Flow Metab 27:1108–1128, 2006.
84. Fukuda S, Warner DS: Cerebral protection. Br J
Anaesth 99:10–17, 2007.
85. Kawaguchi M, Furuya H, Patel PM: Neuroprotective
effects of anesthetic agents. J Anesth 19:150–156,
2005.
86. Inoue S, Drummond JC, Davis DP, et al: Combina-
tion of isoflurane and caspase inhibition reduces
cerebral injury in rats subjected to focal cerebral
ischemia. Anesthesiology 101:75–81, 2004.
87. Preckel B, Weber NC, Sanders RD, et al: Molecular
mechanisms transducing the anesthetic, analgesic,
and organ-protective actions of xenon. Anesthesio-
logy 105:187–197, 2006.
88. Zaugg M, Lucchinetti E, Uecker M, et al: Anaesthe-
tics and cardiac preconditioning: I. Signalling and
cytoprotective mechanisms. Br J Anaesth 91:551–
565, 2003.
89. Pagel PS, Warltier DC: Ventricular function.
In
Warltier DC (ed): Anesthetics and Left Ventricular
Function. Baltimore, Williams & Wilkins, 1995, pp
213–252.
90. Hanley PJ, ter Keurs HE, Cannell MB: Excitation-
contraction coupling in the heart and the negative
inotropic action of volatile anesthetics. Anesthesio-
logy 101:999–1014, 2004.
91. Huneke R, Jungling E, Skasa M, et al: Effects of
the anesthetic gases xenon, halothane, and isoflu-
rane on calcium and potassium currents in human
atrial cardiomyocytes. Anesthesiology 95:999–1006,
2001.
92. Stowe DF, Rehmert GC, Kwok WM, et al: Xenon
does not alter cardiac function or major cation
currents in isolated guinea pig hearts or myocytes.
Anesthesiology 92:516–522, 2000.
93. Ebert TJ, Kampine JP: Nitrous oxide augments sym-
pathetic outflow: Direct evidence from human
peroneal nerve recordings. Anesth Analg 69:444–
449, 1989.
94. Stowe DF, Monroe SM, Marijic J, et al: Effects of
nitrous oxide on contractile function and metabo-
lism of the isolated heart. Anesthesiology 73:1220–
1226, 1990.
95. Pagel PS, Kampine JP, Schmeling WT, et al: Altera-
tion of left ventricular diastolic function by desflu-
rane, isoflurane, and halothane in the chronically
instrumented dog with autonomic nervous system
blockade. Anesthesiology 74:1103–1114, 1991.
96. Tanaka K, Kawano T, Nakamura A, et al: Isoflurane
activates sarcolemmal adenosine diphosphate-sen-
sitive potassium channels in vascular smooth
muscle cells—A role for protein kinase A. Anesthe-
siology 106:984–991, 2007.
97. Yoshino J,Akata T, Izumi K, et al: Multiple actions of
halothane on contractile response to noradrenaline
in isolated mesenteric resistance arteries. Naunyn
Schmied Arch Pharmacol 371:500–515, 2005.
98. Vulliemoz Y: The nitric oxide-cyclic 3
9
,5
9
-guanosine
monophosphate signal transduction pathway in the
mechanism of action of general anesthetics. Toxicol
Lett 100-101:103–108, 1998.
99. Huneke R, Fassl J, Rossaint R, et al: Effects of volatile
anesthetics on cardiac ion channels. Acta Anaesthe-
siol Scand 48:547–561, 2004.
100. Stadnicka A, Marinovic J, Ljubkovic M, et al:Volatile
anesthetic-inducedcardiacpreconditioning.JAnesth
21:212–219, 2007.
101. Suleiman MS, Zacharowski K,Angelini GD: Inflam-
matory response and cardioprotection during open-
heart surgery: The importance of anaesthetics. Br J
Pharmacol 153:21–33, 2008.
Anestésicos inhalatorios: mecanismos de acción
301
10
Sección II
Farmacología y anestesia
© ELSEVIER. Fotocopiar sin autorización es un delito