Table of Contents Table of Contents
Previous Page  301 / 2894 Next Page
Information
Show Menu
Previous Page 301 / 2894 Next Page
Page Background

36. Sonner JM, Antognini JF, Dutton RC, et al: Inhaled

anesthetics and immobility: Mechanisms, mysteries,

and minimum alveolar anesthetic concentration.

Anesth Analg 97:718–740, 2003.

37. Crick F, Koch C: A framework for consciousness.

Nat Neurosci 6:119–126, 2003.

38. Searle JR: Consciousness. Annu Rev Neurosci

23:557–578, 2000.

39. Mashour GA:Integrating the science of consciousness

and anesthesia. Anesth Analg 103:975–982, 2006.

40. Angel A: Central neuronal pathways and the process

of anesthesia. Br J Anesth 71:148–163, 1993.

41. Ries CR, Puil E: Mechanism of anesthesia revealed

by shunting actions of isoflurane on thalamocortical

neurons. J Neurophysiol 81:1795–1801, 1999.

42. Detsch O, Vahle-Hinz C, Kochs E, et al: Isoflurane

induces dose-dependent changes of thalamic soma-

tosensory information transfer. Brain Res 829:

77–89, 1999.

43. Alkire MT, Haier RJ, Fallon JH: Toward a unified

theory of narcosis: Brain imaging evidence for a

thalamocortical switch as the neurophysiologic

basis of anesthetic-induced unconsciousness [see

comments]. Conscious Cogn 9:370–386, 2000.

44. John ER, Prichep LS, Kox W, et al: Invariant reversi-

ble QEEG effects of anesthetics. Conscious Cogn

10:165–183, 2001.

45. Veselis RA: Anesthesia—a descent or a jump into

the depths? Conscious Cogn 10:230–235, 2001.

46. Chortkoff BS, Eger EI 2nd, Crankshaw DP, et al:

Concentrations of desflurane and propofol that

suppress response to command in humans. Anesth

Analg 81:737–743, 1995.

47. Dwyer R, Bennett HL, Eger EI 2nd, et al: Effects of

isoflurane and nitrous oxide in subanesthetic con-

centrations on memory and responsiveness in

volunteers. Anesthesiology 77:888–898, 1992.

48. Hudetz AG: Suppressing consciousness: Mecha-

nisms of general anesthesia. Semin Anesth 25:196–

204, 2006.

49. Tononi G: An information integration theory of

consciousness. BMC Neurosci 5:42, 2004.

50. Varela F, Lachaux JP, Rodriguez E, et al: The bra-

inweb: Phase synchronization and large-scale inte-

gration. Nat Rev Neurosci 2:229–239, 2001.

51. Massimini M, Ferraretti F, Huber R, et al: Break-

down of cortical effective connectivity during sleep.

Science 309:2228–2232, 2005.

52. Mashour GA: Consciousness unbound—Toward a

paradigm of general anesthesia. Anesthesiology

100:428–433, 2004.

53. Lydic R, Biebuyck JF: Sleep neurobiology: Relevance

for mechanistic studies of anaesthesia. Br J Anaesth

72:506–508, 1994.

54. Imas OA, Ropella KM,Ward BD, et al: Volatile anes-

thetics enhance flash-induced gamma oscillations

in rat visual cortex. Anesthesiology 102:937–947,

2005.

55. Imas OA, Ropella KM, Wood JD, et al: Isoflurane

disrupts anteroposterior phase synchronization of

flash-induced field potentials in the rat. Neurosci

Lett 402:216–221, 2006.

56. Perouansky M, Hentschke H, Perkins M, et al:

Amnesic concentrations of the nonimmobilizer 1,2-

dichlorohexafluorocyclobutane (F6, 2N) and isoflu-

rane alter hippocampal theta oscillations in vivo.

Anesthesiology 106:1168–1176, 2007.

57. Ter Mikaelian M, Sanes DH, Semple MN: Transfor-

mation of temporal properties between auditory

midbrain and cortex in the awake Mongolian gerbil.

J Neurosci 27:6091–6102, 2007.

58. Dutton RC, Maurer AJ, Sonner JM, et al: The con-

centration of isoflurane required to suppress lear-

ningdependsonthetypeof learning.Anesthesiology

94:514–519, 2001.

59. Alkire MT, Nathan SV: Does the amygdala mediate

anesthetic-induced amnesia? Basolateral amygdala

lesions block sevoflurane-induced amnesia. Anes-

thesiology 102:754–760, 2005.

60. Alkire MT, Gorski LA: Relative amnesic potency of

five inhalational anesthetics follows the Meyer-

Overton rule. Anesthesiology 101:417–429, 2004.

61. Vertes RP: Hippocampal theta rhythm: A tag for

short-term memory. Hippocampus 15:923–935,

2005.

62. PanWX,McNaughton N: The medial supramammi-

llary nucleus, spatial learning and the frequency of

hippocampal theta activity. Brain Res 764:101–108,

1997.

63. Robbe D, Montgomery SM, Thome A, et al: Canna-

binoids reveal importance of spike timing coordina-

tion in hippocampal function. Nat Neurosci

9:1526–1533, 2006.

64. Seidenbecher T,Laxmi TR,Stork O,et al:Amygdalar

and hippocampal theta rhythm synchronization

during fear memory retrieval. Science 301:846–850,

2003.

65. Pryor KO, Murphy E, Reinsel RA, et al: Heteroge-

neous effects of intravenous anesthetics on modula-

tory memory systems in humans. Anesthesiology:

107., 2007.

66. Rudolph U, Crestani F, Benke D, et al: Benzodiaze-

pine actions mediated by specific gamma-aminobu-

tyric acid(A) receptor subtypes.Nature 401:796–800,

1999.

67. Kandel L, Chortkoff BS, Sonner J, et al: Nonanesthe-

tics can suppress learning. Anesth Analg 82:321–

326, 1996.

68. Mihic SJ, McQuilkin SJ, Eger EI 2nd, et al: Potentia-

tion of gamma-aminobutyric acid type A receptor–

mediated chloride currents by novel halogenated

compounds correlates with their abilities to induce

general anesthesia. Mol Pharmacol 46:851–857,

1994.

69. Zarnowska ED, Pearce RA, Saad AA, et al: The

gamma-subunit governs the susceptibility of recom-

binant gamma-aminobutyric acid type A receptors

to block by the nonimmobilizer 1,2-dichlorohexa-

fluorocyclobutane (F6, 2N). Anesth Analg 101:401–

406, 2005.

70. Jevtovic-Todorovic V, Todorovic SM, Mennerick S,

et al: Nitrous oxide (laughing gas) is an NMDA

antagonist, neuroprotectant and neurotoxin. Nat

Med 4:460–463, 1998.

71. Mennerick S, Jevtovic-Todorovic V, Todorovic SM,

et al: Effect of nitrous oxide on excitatory and inhi-

bitory synaptic transmission in hippocampal cultu-

res. J Neurosci 18:9716–9726, 1998.

72. Gruss M, Bushell TJ, Bright DP, et al: Two-pore-

domain K

+

channels are a novel target for the anes-

thetic gases xenon, nitrous oxide, and cyclopropane.

Mol Pharmacol 65:443–452, 2004.

73. Gries DA, Condouris GA, Shey Z, et al: Anxiolytic-

like action in mice treated with nitrous oxide and

oral triazolam or diazepam. Life Sci 76:1667–1674,

2005.

74. Nelson LE, Lu J, Guo T, et al: The alpha-2-adreno-

receptor agonist dexmedetomidine converges on

an endogenous sleep-promoting pathway to exert

its sedative effects. Anesthesiology 98:428–436,

2003.

75. Lydic R: Sleep and anesthesia.

In

Hemmings HC Jr.,

Hopkins PM (eds): Foundations of Anesthesia, 2nd

ed. London, Elsevier, 2006, pp 373–383.

76. Tung A, Bergmann BM, Herrera S, et al: Recovery

from sleep deprivation occurs during propofol anes-

thesia. Anesthesiology 100:1419–1426, 2004.

77. Hentschke H, Schwarz C, Antkowiak B: Neocor-

tex is the major target of sedative concentrations

of volatile anaesthetics: Strong depression of

firing rates and increase of GABA

A

receptor-

mediated inhibition. Eur J Neurosci 21:93–102,

2005.

78. Perouansky M: Liaisons dangereuses? General

anaesthetics and long-term toxicity in the CNS. Eur

J Anaesthesiol 24:107–115, 2007.

79. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al:

Early exposure to common anesthetic agents causes

widespread neurodegeneration in the developing

rat brain and persistent learning deficits. J Neurosci

23:876–882, 2003.

80. Slikker W Jr, Zou X, Hotchkiss CE, et al: Ketamine-

induced neuronal cell death in the perinatal rhesus

monkey. Toxicol Sci 98:145–158, 2007.

81. Culley DJ, Raghavan SV,Waly M, et al: Nitrous oxide

decreases cortical methionine synthase transiently

but produces lasting memory impairment in aged

rats. Anesth Analg 105:83–88, 2007.

82. Wan Y, Xu J, Ma D, et al: Postoperative impairment

of cognitive function in rats: A possible role for

cytokine-mediated inflammation in the hippocam-

pus. Anesthesiology 106:436–443, 2007.

83. Kitano H, Kirsch JR, Hurn PD, et al: Inhalational

anesthetics as neuroprotectants or chemical precon-

ditioning agents in ischemic brain. J Cereb Blood

Flow Metab 27:1108–1128, 2006.

84. Fukuda S, Warner DS: Cerebral protection. Br J

Anaesth 99:10–17, 2007.

85. Kawaguchi M, Furuya H, Patel PM: Neuroprotective

effects of anesthetic agents. J Anesth 19:150–156,

2005.

86. Inoue S, Drummond JC, Davis DP, et al: Combina-

tion of isoflurane and caspase inhibition reduces

cerebral injury in rats subjected to focal cerebral

ischemia. Anesthesiology 101:75–81, 2004.

87. Preckel B, Weber NC, Sanders RD, et al: Molecular

mechanisms transducing the anesthetic, analgesic,

and organ-protective actions of xenon. Anesthesio-

logy 105:187–197, 2006.

88. Zaugg M, Lucchinetti E, Uecker M, et al: Anaesthe-

tics and cardiac preconditioning: I. Signalling and

cytoprotective mechanisms. Br J Anaesth 91:551–

565, 2003.

89. Pagel PS, Warltier DC: Ventricular function.

In

Warltier DC (ed): Anesthetics and Left Ventricular

Function. Baltimore, Williams & Wilkins, 1995, pp

213–252.

90. Hanley PJ, ter Keurs HE, Cannell MB: Excitation-

contraction coupling in the heart and the negative

inotropic action of volatile anesthetics. Anesthesio-

logy 101:999–1014, 2004.

91. Huneke R, Jungling E, Skasa M, et al: Effects of

the anesthetic gases xenon, halothane, and isoflu-

rane on calcium and potassium currents in human

atrial cardiomyocytes. Anesthesiology 95:999–1006,

2001.

92. Stowe DF, Rehmert GC, Kwok WM, et al: Xenon

does not alter cardiac function or major cation

currents in isolated guinea pig hearts or myocytes.

Anesthesiology 92:516–522, 2000.

93. Ebert TJ, Kampine JP: Nitrous oxide augments sym-

pathetic outflow: Direct evidence from human

peroneal nerve recordings. Anesth Analg 69:444–

449, 1989.

94. Stowe DF, Monroe SM, Marijic J, et al: Effects of

nitrous oxide on contractile function and metabo-

lism of the isolated heart. Anesthesiology 73:1220–

1226, 1990.

95. Pagel PS, Kampine JP, Schmeling WT, et al: Altera-

tion of left ventricular diastolic function by desflu-

rane, isoflurane, and halothane in the chronically

instrumented dog with autonomic nervous system

blockade. Anesthesiology 74:1103–1114, 1991.

96. Tanaka K, Kawano T, Nakamura A, et al: Isoflurane

activates sarcolemmal adenosine diphosphate-sen-

sitive potassium channels in vascular smooth

muscle cells—A role for protein kinase A. Anesthe-

siology 106:984–991, 2007.

97. Yoshino J,Akata T, Izumi K, et al: Multiple actions of

halothane on contractile response to noradrenaline

in isolated mesenteric resistance arteries. Naunyn

Schmied Arch Pharmacol 371:500–515, 2005.

98. Vulliemoz Y: The nitric oxide-cyclic 3

9

,5

9

-guanosine

monophosphate signal transduction pathway in the

mechanism of action of general anesthetics. Toxicol

Lett 100-101:103–108, 1998.

99. Huneke R, Fassl J, Rossaint R, et al: Effects of volatile

anesthetics on cardiac ion channels. Acta Anaesthe-

siol Scand 48:547–561, 2004.

100. Stadnicka A, Marinovic J, Ljubkovic M, et al:Volatile

anesthetic-inducedcardiacpreconditioning.JAnesth

21:212–219, 2007.

101. Suleiman MS, Zacharowski K,Angelini GD: Inflam-

matory response and cardioprotection during open-

heart surgery: The importance of anaesthetics. Br J

Pharmacol 153:21–33, 2008.

Anestésicos inhalatorios: mecanismos de acción

301

10

Sección II

Farmacología y anestesia

© ELSEVIER. Fotocopiar sin autorización es un delito