Table of Contents Table of Contents
Previous Page  302 / 2894 Next Page
Information
Show Menu
Previous Page 302 / 2894 Next Page
Page Background

102. Pratt PF Jr, Wang C, Weihrauch D, et al: Cardiopro-

tection by volatile anesthetics: new applications for

old drugs? Curr Opin Anaesth 19:397–403, 2006.

103. Weber NC, Toma O, Awan S, et al: Effects of nitrous

oxide on the rat heart in vivo—Another inhalational

anesthetic that preconditions the heart? Anesthesio-

logy 103:1174–1182, 2005.

104. Tanaka K, Ludwig LM, Kersten JR, et al: Mecha-

nisms of cardioprotection by volatile anesthetics.

Anesthesiology 100:707–721, 2004.

105. Stuth EAE, Krolo M, Tonkovic-Capin M, et al:

Effects of halothane on synaptic neurotransmission

to medullary expiratory neurons in the ventral res-

piratory group of dogs. Anesthesiology 91:804–814,

1999.

106. Franks NP, LiebWR: Molecular and cellular mecha-

nisms of general anaesthesia. Nature 367:607–614,

1994.

106. Franks NP, Lieb WR: Volatile general anaesthetics

activate a novel neuronal K current.Nature 333:662–

664, 1988.

107. Bertaccini EJ, Trudell JR, Franks NP: The common

chemical motifs within anesthetic binding sites.

Anesth Analg 104:318–324, 2007.

108. Jenkins A, Greenblatt EP, Faulkner HJ, et al: Evi-

dence for a common binding cavity for three general

anesthetics within the GABA

a

receptor. J Neurosci

21:RC136, 2001.

109. KoltchineVV,Finn SE,JenkinsA,et al:Agonist gating

and isoflurane potentiation in the human gamma-

aminobutyric acid type A receptor determined by the

volume of a second transmembrane domain residue.

Mol Pharmacol 56:1087–1093, 1999.

110. WickMJ,Mihic SJ,Ueno S,et al:Mutations of gamma-

aminobutyric acid and glycine receptors change

alcohol cutoff: Evidence for an alcohol receptor?

Proc Natl Acad Sci U S A 95:6504–6509, 1998.

111. Trudell JR, Bertaccini E: Comparative modeling of

a GABA

a

alpha1 receptor using three crystal struc-

tures as templates. J Mol Graph Model 23:39–49,

2004.

112. Dickinson R, Peterson BK, Banks P, et al: Competi-

tive inhibition at the glycine site of the

N

-methyl-d-

aspartate receptor by the anesthetics xenon and

Isoflurane. Anesthesiology 107:756–767, 2007.

113. Hemmings HC Jr, Akabas MH, Goldstein PA, et al:

Emerging molecular mechanisms of general anes-

thetic action. Trends Pharmacol Sci 26:503–510,

2005.

114. Krasowski MD, Harrison NL: General anaesthetic

actions on ligand-gated ion channels. Cell Mol Life

Sci 55:1278–1303, 1999.

115. Sirois JE, Lei Q, Talley EM, et al: The TASK-1 two-

pore domain K

+

channel is a molecular substrate for

neuronal effects of inhalation anesthetics. J Neu-

rosci 20:6347–6354, 2000.

116. Patel AJ, Honore E, Lesage F, et al: Inhalational anes-

thetics activate two-pore-domain background K

+

channels. Nat Neurosci 2:422–426, 1999.

117. Perouansky M, Hemmings HC: Presynaptic actions

of general anesthetics.

In

Antognini JF, Carlens E,

Raines D (eds): Neural Mechanisms of Anesthesia.

Totowa, NJ, Humana Press, 2003, pp 345–370.

118. Lynch JW: Molecular structure and function of the

glycine receptor chloride channel. Physiol Rev

84:1051–1095, 2004.

119. Mihic SJ, Ye Q, Wick MJ, et al: Sites of alcohol and

volatile anaesthetic action on GABA(A) and glycine

receptors. Nature 389:385–389, 1997.

120. Jenkins A, Franks NP, Lieb WR: Actions of general

anaesthetics on 5-HT3 receptors in N1E-115 neuro-

blastoma cells. Br J Pharmacol 117:1507–1515,

1996.

121. Machu TK, Harris RA: Alcohols and anesthetics

enhance the function of 5-hydroxytryptamine(3)

receptors expressed in

Xenopus laevis it

oocytes.

J Pharmacol Exp Ther 271:898–905, 1994.

122. Solt K, Stevens RJ, Davies PA, et al: General anesthe-

tic-induced channel gating enhancement of

5-hydroxytryptamine type 3 receptors depends on

receptor subunit composition. J Pharmacol Exp

Ther 315:771–776, 2005.

123. Role LW, Berg DK: Nicotinic receptors in the deve-

lopment and modulation of CNS synapses. Neuron

16:1077–1085, 1996.

124. Flood P, Ramirez-Latorre J, Role L: Alpha 4 beta 2

neuronal nicotinic acetylcholine receptors in the

central nervous system are inhibited by isoflurane

and propofol, but alpha 7-type nicotinic acetylcho-

line receptors are unaffected. Anesthesiology

86:859–865, 1997.

125. Violet JM, Downie DL, Nakisa RC, et al: Differential

sensitivities of mammalian neuronal and muscle

nicotinic acetylcholine receptors to general anesthe-

tics. Anesthesiology 86:866–874, 1997.

126. Dingledine R, Borges K, Bowie D, et al: The gluta-

mate receptor ion channels.Pharmacol Rev 51:7–61,

1999.

127. Franks NP, Dickinson R, de Sousa SL, et al: How

does xenon produce anaesthesia? Nature 396:324,

1998.

128. Solt K, Eger EI, Raines DE: Differential modulation

of human

N

-methyl-d-aspartate receptors by struc-

turally diverse general anesthetics. Anesth Analg

102:1407–1411, 2006.

129. Harris RA,Mihic SJ,Dildy-Mayfield JE,et al:Actions

of anesthetics on ligand-gated ion channels: Role of

receptor subunit composition. FASEB J 9:1454–

1462, 1995.

130. Sonner JM, Vissel B, Royle G, et al: The effect of

three inhaled anesthetics in mice harboring muta-

tions in the GluR6 (kainate) receptor gene. Anesth

Analg 101:143–148, 2005.

131. MacIver MB, Mikulec AA, Amagasu SM, et al: Vola-

tile anesthetics depress glutamate transmission via

presynaptic actions. Anesthesiology 85:823–834,

1996.

132. Perouansky M, Hemmings HC Jr, Pearce RA: Anes-

thetic effects on glutamatergic neurotransmission:

Lessons learned from a large synapse. Anesthesio-

logy 100:470–472, 2004.

133. Winegar BD, MacIver MB: Isoflurane depresses

hippocampal CA1 glutamate nerve terminals

without inhibiting fiber volleys. BMC Neurosci 7:5,

2006.

134. Haydon DA, Urban BW: The effects of some inha-

lation anaesthetics on the sodium current of the

squid giant axon. J Physiol (Lond) 341:429–439,

1983.

135. Berg-Johnsen J, Langmoen IA: The effect of isoflu-

rane on unmyelinated and myelinated fibres in the

rat brain. Acta Physiol Scand 127:87–93, 1986.

136. Mikulec AA, Pittson S, Amagasu SM, et al: Halo-

thane depresses action potential conduction in

hippocampal axons. Brain Res 796:231–238,

1998.

137. Wu XS, Sun JY, Evers AS, et al: Isoflurane inhibits

transmitter release and the presynaptic action

potential. Anesthesiology 100:663–670, 2004.

138. Yu FH, Catterall WA: The VGL-chanome: A protein

superfamily specialized for electrical signaling and

ionic homeostasis. Sci STKE 2004:re15, 2004.

139. Shiraishi M,Harris RA: Effects of alcohols and anes-

thetics on recombinant voltage-gated Na

+

channels.

J Pharmacol Exp Ther 309:987–994, 2004.

140. OuYang W, Hemmings HC Jr: Depression by isoflu-

rane of the action potential and underlying voltage-

gated ion currents in isolated rat neurohypophysial

nerve terminals. J Pharmacol Exp Ther 312:801–

808, 2005.

141. OuYangW, Jih T-Y, Zhang T-T, et al: Isoflurane inhi-

bits NaChBac, a prokaryotic voltage-gated sodium

channel. J Pharmacol Exp Ther 322:1076–1083,

2007.

142. Ouyang W, Hemmings HC Jr: Isoform-selective

effects of isoflurane on voltage-gated Na

+

channels.

Anesthesiology 107:91–98, 2007.

143. Ratnakumari L, Vysotskaya TN, Duch DS, et al:

Differential effects of anesthetic and nonanesthetic

cyclobutanes on neuronal voltage-gated sodium

channels. Anesthesiology 92:529–541, 2000.

144. Catterall WA: Structure and regulation of voltage-

gated Ca

2+

channels. Annu Rev Cell Dev Biol

16:521–555, 2000.

145. Topf N, Recio-Pinto E, Blanck TJ, et al: Actions of

general anesthetics on voltage-gated ion channels.

In

Antognini JF, Carlens E, Raines D (eds): Neural

Mechanisms of Anesthesia. Totowa, NJ, Humana

Press, 2003, pp 299–318.

146. Miao N, Frazer MJ, Lynch C 3rd:Volatile anesthetics

depress Ca

2+

transients and glutamate release in

isolated cerebral synaptosomes. Anesthesiology

83:593–603, 1995.

147. Kameyama K,Aono K, Kitamura K: Isoflurane inhi-

bits neuronal Ca

2+

channels through enhancement

of current inactivation. Br J Anaesth 82:402–411,

1999.

148. Study RE: Isoflurane inhibits multiple voltage-gated

calciumcurrents in hippocampal pyramidal neurons

[see comments]. Anesthesiology 81:104–116, 1994.

149. Hall AC, Lieb WR, Franks NP: Insensitivity of

P-type calcium channels to inhalational and intra-

venous general anesthetics. Anesthesiology 81:117–

123, 1994.

150. Takei T, Saegusa H, Zong S, et al: Increased sensiti-

vity to halothane but decreased sensitivity to propo-

fol in mice lacking the N-type Ca

2+

channel.

Neurosci Lett 350:41–45, 2003.

151. Joksovic PM,Brimelow BC,Murbartian J,et al: Con-

trasting anesthetic sensitivities of T-type Ca

2+

chan-

nels of reticular thalamic neurons and recombinant

Ca(v)3. 3 channels. Br J Pharmacol 144:59–70,

2005.

152. Todorovic SM, Jevtovic-Todorovic V, Mennerick S,

et al: Ca(v)3.2 channel is a molecular substrate for

inhibition of T-type calcium currents in rat sensory

neurons by nitrous oxide. Mol Pharmacol 60:603–

610, 2001.

153. Petrenko AB, Tsujita M, Kohno T, et al: Mutation of

alpha(1G) T-type calcium channels in mice does not

change anesthetic requirements for loss of the

righting reflex and minimum alveolar concentra-

tion but delays the onset of anesthetic induction.

Anesthesiology 106:1177–1185, 2007.

154. Rithalia A, Hopkins PM, Harrison SM: The effects

of halothane, isoflurane, and sevoflurane on Ca

2+

current and transient outward K

+

current in suben-

docardial and subepicardial myocytes from the rat

left ventricle. Anesth Analg 99:1615–1622, 2004.

155. Davies LA, Gibson CN, Boyett MR, et al: Effects of

isoflurane, sevoflurane, and halothane on myofila-

ment Ca

2+

sensitivity and sarcoplasmic reticulum

Ca

2+

release in rat ventricular myocytes.Anesthesio-

logy 93:1034–1044, 2000.

156. Pabelick CM, Prakash YS, Kannan MS, et al: Effects

of halothane on sarcoplasmic reticulum calcium

release channels in porcine airway smooth muscle

cells. Anesthesiology 95:207–215, 2001.

157. Roberts MC, Mickelson JR, Patterson EE, et al:

Autosomal dominant canine malignant hyperther-

mia is caused by a mutation in the gene encoding

the skeletal muscle calcium release channel (

RYR1

).

Anesthesiology 95:716–725, 2001.

158. Mickelson JR, Louis CF: Malignant hyperthermia:

Excitation-contraction coupling, Ca

2+

release

channel, and cell Ca

2+

regulation defects. Physiol

Rev 76:537–592, 1996.

159. Yost CS: Potassium channels: Basic aspects, functio-

nal roles, and medical significance. Anesthesiology

90:1186–1203, 1999.

160. Friederich P, Benzenberg D, Trellakis S, et al: Inte-

raction of volatile anesthetics with human Kv

channels in relation to clinical concentrations.

Anesthesiology 95:954–958, 2001.

161. Franks NP, Lieb WR: Volatile general anesthetics

activate a novel neuronal K

+

current. Nature

333:662–664, 1988.

162. Franks NP, Honore E: The TREK K-2P channels and

their role in general anaesthesia and neuroprotec-

tion. Trends Pharmacol Sci 25:601–608, 2004.

163. Patel AJ, Honore E: Anesthetic-sensitive 2P domain

K

+

channels. Anesthesiology 95:1013–1021, 2001.

164. Farwell D, Gollob MH: Electrical heart disease:

Genetic and molecular basis of cardiac arrhythmias

in normal structural hearts. Can J Cardiol 23(Suppl

A)16A:–22A, 2007.

302

 Farmacología y anestesia

II