102. Pratt PF Jr, Wang C, Weihrauch D, et al: Cardiopro-
tection by volatile anesthetics: new applications for
old drugs? Curr Opin Anaesth 19:397–403, 2006.
103. Weber NC, Toma O, Awan S, et al: Effects of nitrous
oxide on the rat heart in vivo—Another inhalational
anesthetic that preconditions the heart? Anesthesio-
logy 103:1174–1182, 2005.
104. Tanaka K, Ludwig LM, Kersten JR, et al: Mecha-
nisms of cardioprotection by volatile anesthetics.
Anesthesiology 100:707–721, 2004.
105. Stuth EAE, Krolo M, Tonkovic-Capin M, et al:
Effects of halothane on synaptic neurotransmission
to medullary expiratory neurons in the ventral res-
piratory group of dogs. Anesthesiology 91:804–814,
1999.
106. Franks NP, LiebWR: Molecular and cellular mecha-
nisms of general anaesthesia. Nature 367:607–614,
1994.
106. Franks NP, Lieb WR: Volatile general anaesthetics
activate a novel neuronal K current.Nature 333:662–
664, 1988.
107. Bertaccini EJ, Trudell JR, Franks NP: The common
chemical motifs within anesthetic binding sites.
Anesth Analg 104:318–324, 2007.
108. Jenkins A, Greenblatt EP, Faulkner HJ, et al: Evi-
dence for a common binding cavity for three general
anesthetics within the GABA
a
receptor. J Neurosci
21:RC136, 2001.
109. KoltchineVV,Finn SE,JenkinsA,et al:Agonist gating
and isoflurane potentiation in the human gamma-
aminobutyric acid type A receptor determined by the
volume of a second transmembrane domain residue.
Mol Pharmacol 56:1087–1093, 1999.
110. WickMJ,Mihic SJ,Ueno S,et al:Mutations of gamma-
aminobutyric acid and glycine receptors change
alcohol cutoff: Evidence for an alcohol receptor?
Proc Natl Acad Sci U S A 95:6504–6509, 1998.
111. Trudell JR, Bertaccini E: Comparative modeling of
a GABA
a
alpha1 receptor using three crystal struc-
tures as templates. J Mol Graph Model 23:39–49,
2004.
112. Dickinson R, Peterson BK, Banks P, et al: Competi-
tive inhibition at the glycine site of the
N
-methyl-d-
aspartate receptor by the anesthetics xenon and
Isoflurane. Anesthesiology 107:756–767, 2007.
113. Hemmings HC Jr, Akabas MH, Goldstein PA, et al:
Emerging molecular mechanisms of general anes-
thetic action. Trends Pharmacol Sci 26:503–510,
2005.
114. Krasowski MD, Harrison NL: General anaesthetic
actions on ligand-gated ion channels. Cell Mol Life
Sci 55:1278–1303, 1999.
115. Sirois JE, Lei Q, Talley EM, et al: The TASK-1 two-
pore domain K
+
channel is a molecular substrate for
neuronal effects of inhalation anesthetics. J Neu-
rosci 20:6347–6354, 2000.
116. Patel AJ, Honore E, Lesage F, et al: Inhalational anes-
thetics activate two-pore-domain background K
+
channels. Nat Neurosci 2:422–426, 1999.
117. Perouansky M, Hemmings HC: Presynaptic actions
of general anesthetics.
In
Antognini JF, Carlens E,
Raines D (eds): Neural Mechanisms of Anesthesia.
Totowa, NJ, Humana Press, 2003, pp 345–370.
118. Lynch JW: Molecular structure and function of the
glycine receptor chloride channel. Physiol Rev
84:1051–1095, 2004.
119. Mihic SJ, Ye Q, Wick MJ, et al: Sites of alcohol and
volatile anaesthetic action on GABA(A) and glycine
receptors. Nature 389:385–389, 1997.
120. Jenkins A, Franks NP, Lieb WR: Actions of general
anaesthetics on 5-HT3 receptors in N1E-115 neuro-
blastoma cells. Br J Pharmacol 117:1507–1515,
1996.
121. Machu TK, Harris RA: Alcohols and anesthetics
enhance the function of 5-hydroxytryptamine(3)
receptors expressed in
Xenopus laevis it
oocytes.
J Pharmacol Exp Ther 271:898–905, 1994.
122. Solt K, Stevens RJ, Davies PA, et al: General anesthe-
tic-induced channel gating enhancement of
5-hydroxytryptamine type 3 receptors depends on
receptor subunit composition. J Pharmacol Exp
Ther 315:771–776, 2005.
123. Role LW, Berg DK: Nicotinic receptors in the deve-
lopment and modulation of CNS synapses. Neuron
16:1077–1085, 1996.
124. Flood P, Ramirez-Latorre J, Role L: Alpha 4 beta 2
neuronal nicotinic acetylcholine receptors in the
central nervous system are inhibited by isoflurane
and propofol, but alpha 7-type nicotinic acetylcho-
line receptors are unaffected. Anesthesiology
86:859–865, 1997.
125. Violet JM, Downie DL, Nakisa RC, et al: Differential
sensitivities of mammalian neuronal and muscle
nicotinic acetylcholine receptors to general anesthe-
tics. Anesthesiology 86:866–874, 1997.
126. Dingledine R, Borges K, Bowie D, et al: The gluta-
mate receptor ion channels.Pharmacol Rev 51:7–61,
1999.
127. Franks NP, Dickinson R, de Sousa SL, et al: How
does xenon produce anaesthesia? Nature 396:324,
1998.
128. Solt K, Eger EI, Raines DE: Differential modulation
of human
N
-methyl-d-aspartate receptors by struc-
turally diverse general anesthetics. Anesth Analg
102:1407–1411, 2006.
129. Harris RA,Mihic SJ,Dildy-Mayfield JE,et al:Actions
of anesthetics on ligand-gated ion channels: Role of
receptor subunit composition. FASEB J 9:1454–
1462, 1995.
130. Sonner JM, Vissel B, Royle G, et al: The effect of
three inhaled anesthetics in mice harboring muta-
tions in the GluR6 (kainate) receptor gene. Anesth
Analg 101:143–148, 2005.
131. MacIver MB, Mikulec AA, Amagasu SM, et al: Vola-
tile anesthetics depress glutamate transmission via
presynaptic actions. Anesthesiology 85:823–834,
1996.
132. Perouansky M, Hemmings HC Jr, Pearce RA: Anes-
thetic effects on glutamatergic neurotransmission:
Lessons learned from a large synapse. Anesthesio-
logy 100:470–472, 2004.
133. Winegar BD, MacIver MB: Isoflurane depresses
hippocampal CA1 glutamate nerve terminals
without inhibiting fiber volleys. BMC Neurosci 7:5,
2006.
134. Haydon DA, Urban BW: The effects of some inha-
lation anaesthetics on the sodium current of the
squid giant axon. J Physiol (Lond) 341:429–439,
1983.
135. Berg-Johnsen J, Langmoen IA: The effect of isoflu-
rane on unmyelinated and myelinated fibres in the
rat brain. Acta Physiol Scand 127:87–93, 1986.
136. Mikulec AA, Pittson S, Amagasu SM, et al: Halo-
thane depresses action potential conduction in
hippocampal axons. Brain Res 796:231–238,
1998.
137. Wu XS, Sun JY, Evers AS, et al: Isoflurane inhibits
transmitter release and the presynaptic action
potential. Anesthesiology 100:663–670, 2004.
138. Yu FH, Catterall WA: The VGL-chanome: A protein
superfamily specialized for electrical signaling and
ionic homeostasis. Sci STKE 2004:re15, 2004.
139. Shiraishi M,Harris RA: Effects of alcohols and anes-
thetics on recombinant voltage-gated Na
+
channels.
J Pharmacol Exp Ther 309:987–994, 2004.
140. OuYang W, Hemmings HC Jr: Depression by isoflu-
rane of the action potential and underlying voltage-
gated ion currents in isolated rat neurohypophysial
nerve terminals. J Pharmacol Exp Ther 312:801–
808, 2005.
141. OuYangW, Jih T-Y, Zhang T-T, et al: Isoflurane inhi-
bits NaChBac, a prokaryotic voltage-gated sodium
channel. J Pharmacol Exp Ther 322:1076–1083,
2007.
142. Ouyang W, Hemmings HC Jr: Isoform-selective
effects of isoflurane on voltage-gated Na
+
channels.
Anesthesiology 107:91–98, 2007.
143. Ratnakumari L, Vysotskaya TN, Duch DS, et al:
Differential effects of anesthetic and nonanesthetic
cyclobutanes on neuronal voltage-gated sodium
channels. Anesthesiology 92:529–541, 2000.
144. Catterall WA: Structure and regulation of voltage-
gated Ca
2+
channels. Annu Rev Cell Dev Biol
16:521–555, 2000.
145. Topf N, Recio-Pinto E, Blanck TJ, et al: Actions of
general anesthetics on voltage-gated ion channels.
In
Antognini JF, Carlens E, Raines D (eds): Neural
Mechanisms of Anesthesia. Totowa, NJ, Humana
Press, 2003, pp 299–318.
146. Miao N, Frazer MJ, Lynch C 3rd:Volatile anesthetics
depress Ca
2+
transients and glutamate release in
isolated cerebral synaptosomes. Anesthesiology
83:593–603, 1995.
147. Kameyama K,Aono K, Kitamura K: Isoflurane inhi-
bits neuronal Ca
2+
channels through enhancement
of current inactivation. Br J Anaesth 82:402–411,
1999.
148. Study RE: Isoflurane inhibits multiple voltage-gated
calciumcurrents in hippocampal pyramidal neurons
[see comments]. Anesthesiology 81:104–116, 1994.
149. Hall AC, Lieb WR, Franks NP: Insensitivity of
P-type calcium channels to inhalational and intra-
venous general anesthetics. Anesthesiology 81:117–
123, 1994.
150. Takei T, Saegusa H, Zong S, et al: Increased sensiti-
vity to halothane but decreased sensitivity to propo-
fol in mice lacking the N-type Ca
2+
channel.
Neurosci Lett 350:41–45, 2003.
151. Joksovic PM,Brimelow BC,Murbartian J,et al: Con-
trasting anesthetic sensitivities of T-type Ca
2+
chan-
nels of reticular thalamic neurons and recombinant
Ca(v)3. 3 channels. Br J Pharmacol 144:59–70,
2005.
152. Todorovic SM, Jevtovic-Todorovic V, Mennerick S,
et al: Ca(v)3.2 channel is a molecular substrate for
inhibition of T-type calcium currents in rat sensory
neurons by nitrous oxide. Mol Pharmacol 60:603–
610, 2001.
153. Petrenko AB, Tsujita M, Kohno T, et al: Mutation of
alpha(1G) T-type calcium channels in mice does not
change anesthetic requirements for loss of the
righting reflex and minimum alveolar concentra-
tion but delays the onset of anesthetic induction.
Anesthesiology 106:1177–1185, 2007.
154. Rithalia A, Hopkins PM, Harrison SM: The effects
of halothane, isoflurane, and sevoflurane on Ca
2+
current and transient outward K
+
current in suben-
docardial and subepicardial myocytes from the rat
left ventricle. Anesth Analg 99:1615–1622, 2004.
155. Davies LA, Gibson CN, Boyett MR, et al: Effects of
isoflurane, sevoflurane, and halothane on myofila-
ment Ca
2+
sensitivity and sarcoplasmic reticulum
Ca
2+
release in rat ventricular myocytes.Anesthesio-
logy 93:1034–1044, 2000.
156. Pabelick CM, Prakash YS, Kannan MS, et al: Effects
of halothane on sarcoplasmic reticulum calcium
release channels in porcine airway smooth muscle
cells. Anesthesiology 95:207–215, 2001.
157. Roberts MC, Mickelson JR, Patterson EE, et al:
Autosomal dominant canine malignant hyperther-
mia is caused by a mutation in the gene encoding
the skeletal muscle calcium release channel (
RYR1
).
Anesthesiology 95:716–725, 2001.
158. Mickelson JR, Louis CF: Malignant hyperthermia:
Excitation-contraction coupling, Ca
2+
release
channel, and cell Ca
2+
regulation defects. Physiol
Rev 76:537–592, 1996.
159. Yost CS: Potassium channels: Basic aspects, functio-
nal roles, and medical significance. Anesthesiology
90:1186–1203, 1999.
160. Friederich P, Benzenberg D, Trellakis S, et al: Inte-
raction of volatile anesthetics with human Kv
channels in relation to clinical concentrations.
Anesthesiology 95:954–958, 2001.
161. Franks NP, Lieb WR: Volatile general anesthetics
activate a novel neuronal K
+
current. Nature
333:662–664, 1988.
162. Franks NP, Honore E: The TREK K-2P channels and
their role in general anaesthesia and neuroprotec-
tion. Trends Pharmacol Sci 25:601–608, 2004.
163. Patel AJ, Honore E: Anesthetic-sensitive 2P domain
K
+
channels. Anesthesiology 95:1013–1021, 2001.
164. Farwell D, Gollob MH: Electrical heart disease:
Genetic and molecular basis of cardiac arrhythmias
in normal structural hearts. Can J Cardiol 23(Suppl
A)16A:–22A, 2007.
302
Farmacología y anestesia
II