Table of Contents Table of Contents
Previous Page  304 / 2894 Next Page
Information
Show Menu
Previous Page 304 / 2894 Next Page
Page Background

228. Imas OA, Ropella KM,Ward BD, et al: Volatile anes-

thetics disrupt frontal-posterior recurrent informa-

tion transfer at gamma frequencies in rat. Neurosci

Lett 387:145–150, 2005.

229. Buzsaki G: Theta oscillations in the hippocampus.

Neuron 33:325–340, 2002.

230. Bland BH, Bland CE, Colom LV, et al: Effect of halo-

thane on type 2 immobility-related hippocampal

theta field activity and theta-on/theta-off cell dis-

charges. Hippocampus 13:38–47, 2003.

231. Szarecka A, Xu Y, Tang P: Dynamics of firefly luci-

ferase inhibition by general anesthetics: gaussian

and anisotropic network analyses. Biophys J

93:1895–1905, 2007.

232. Gottschalk A, Haney P: Computational aspects of

anesthetic action in simple neural models.Anesthe-

siology 98:548–564, 2003.

233. Wilson MT, Sleigh JW, Steyn-Ross DA, et al: General

anesthetic-induced seizures can be explained by a

mean-field model of cortical dynamics.Anesthesio-

logy 104:588–593, 2006.

234. Steyn-Ross ML, Steyn-Ross DA, Sleigh JW: Mode-

lling general anaesthesia as a first-order phase tran-

sition in the cortex. Prog Biophys Mol Biol

85:369–385, 2004.

235. Zhang Y, Stabernack C, Sonner J, et al: Both cere-

bral GABA(A) receptors and spinal GABA(A)

receptors modulate the capacity of isoflurane to

produce immobility. Anesth Analg 92:1585–1589,

2001.

236. Zhang Y,Wu S, Eger EI 2nd, et al: Neither GABA(A)

nor strychnine-sensitive glycine receptors are the

sole mediators of MAC for isoflurane.Anesth Analg

92:123–127, 2001.

237. Sukhotinsky I,ZalkindV,Lu J,et al: Neural pathways

associated with loss of consciousness caused by

intracerebral microinjection of GABA A-active

anesthetics. Eur J Neurosci 25:1417–1436, 2007.

238. Nash HA: In vivo genetics of anaesthetic action.

Br J Anaesth 89:143–155, 2002.

239. Sonner JM, Cascio M, Xing Y, et al: Alpha 1 subu-

nit–containing GABA type A receptors in fore-

brain contribute to the effect of inhaled anesthetics

on conditioned fear. Mol Pharmacol 68:61–68,

2005.

240. Sedensky MM, Siefker JM, Morgan PG: Model orga-

nisms: New insights into ion channel and transpor-

ter function: Stomatin homologues interact in

Caenorhabditis elegans

. Am J Physiol Cell Physiol

280:C1340–C1348, 2001.

241. Kayser EB, Morgan PG, Sedensky MM: GAS-1: A

mitochondrial protein controls sensitivity to volatile

anesthetics in the nematode

Caenorhabditis elegans

.

Anesthesiology 90:545–554, 1999.

242. Cascio M, Xing Y, Gong D, et al: Mouse chromo-

some 7 harbors a quantitative trait locus for isoflu-

rane minimum alveolar concentration. Anesth

Analg 105:381–385, 2007.

243. Veselis RA, Reinsel RA, Feshchenko VA, et al: A

neuroanatomical construct for the amnesic effects

of propofol. Anesthesiology 97:329–337, 2002.

244. Alkire MT, Miller J: General anesthesia and the

neural correlates of consciousness. Prog Brain Res

150:229–244, 2005.

245. Hemmings HC Jr,Yan-W,Westphalen RI,Ryan TA:The

general anesthetic isoflurane depresses synaptic vesicle

exocytosis. Mol Pharmacol 67:1591–1599, 2005.

304

 Farmacología y anestesia

II