228. Imas OA, Ropella KM,Ward BD, et al: Volatile anes-
thetics disrupt frontal-posterior recurrent informa-
tion transfer at gamma frequencies in rat. Neurosci
Lett 387:145–150, 2005.
229. Buzsaki G: Theta oscillations in the hippocampus.
Neuron 33:325–340, 2002.
230. Bland BH, Bland CE, Colom LV, et al: Effect of halo-
thane on type 2 immobility-related hippocampal
theta field activity and theta-on/theta-off cell dis-
charges. Hippocampus 13:38–47, 2003.
231. Szarecka A, Xu Y, Tang P: Dynamics of firefly luci-
ferase inhibition by general anesthetics: gaussian
and anisotropic network analyses. Biophys J
93:1895–1905, 2007.
232. Gottschalk A, Haney P: Computational aspects of
anesthetic action in simple neural models.Anesthe-
siology 98:548–564, 2003.
233. Wilson MT, Sleigh JW, Steyn-Ross DA, et al: General
anesthetic-induced seizures can be explained by a
mean-field model of cortical dynamics.Anesthesio-
logy 104:588–593, 2006.
234. Steyn-Ross ML, Steyn-Ross DA, Sleigh JW: Mode-
lling general anaesthesia as a first-order phase tran-
sition in the cortex. Prog Biophys Mol Biol
85:369–385, 2004.
235. Zhang Y, Stabernack C, Sonner J, et al: Both cere-
bral GABA(A) receptors and spinal GABA(A)
receptors modulate the capacity of isoflurane to
produce immobility. Anesth Analg 92:1585–1589,
2001.
236. Zhang Y,Wu S, Eger EI 2nd, et al: Neither GABA(A)
nor strychnine-sensitive glycine receptors are the
sole mediators of MAC for isoflurane.Anesth Analg
92:123–127, 2001.
237. Sukhotinsky I,ZalkindV,Lu J,et al: Neural pathways
associated with loss of consciousness caused by
intracerebral microinjection of GABA A-active
anesthetics. Eur J Neurosci 25:1417–1436, 2007.
238. Nash HA: In vivo genetics of anaesthetic action.
Br J Anaesth 89:143–155, 2002.
239. Sonner JM, Cascio M, Xing Y, et al: Alpha 1 subu-
nit–containing GABA type A receptors in fore-
brain contribute to the effect of inhaled anesthetics
on conditioned fear. Mol Pharmacol 68:61–68,
2005.
240. Sedensky MM, Siefker JM, Morgan PG: Model orga-
nisms: New insights into ion channel and transpor-
ter function: Stomatin homologues interact in
Caenorhabditis elegans
. Am J Physiol Cell Physiol
280:C1340–C1348, 2001.
241. Kayser EB, Morgan PG, Sedensky MM: GAS-1: A
mitochondrial protein controls sensitivity to volatile
anesthetics in the nematode
Caenorhabditis elegans
.
Anesthesiology 90:545–554, 1999.
242. Cascio M, Xing Y, Gong D, et al: Mouse chromo-
some 7 harbors a quantitative trait locus for isoflu-
rane minimum alveolar concentration. Anesth
Analg 105:381–385, 2007.
243. Veselis RA, Reinsel RA, Feshchenko VA, et al: A
neuroanatomical construct for the amnesic effects
of propofol. Anesthesiology 97:329–337, 2002.
244. Alkire MT, Miller J: General anesthesia and the
neural correlates of consciousness. Prog Brain Res
150:229–244, 2005.
245. Hemmings HC Jr,Yan-W,Westphalen RI,Ryan TA:The
general anesthetic isoflurane depresses synaptic vesicle
exocytosis. Mol Pharmacol 67:1591–1599, 2005.
304
Farmacología y anestesia
II