Farmacología pulmonar
357
12
Sección II
Farmacología y anestesia
© ELSEVIER. Fotocopiar sin autorización es un delito
67. Lund V: Nasal physiology: Neurochemical recep-
tors, nasal cycle, and ciliary action. Allergy Asthma
Proc 17:179, 1996.
68. Lindberg S, Cervin A, Runer T: Low levels of nasal
nitric oxide (NO) correlate to impaired mucociliary
function in the upper airways. Acta Otolaryngol
117:728, 1997.
69. Wagner EM, Foster WM: Importance of airway
blood flow on particle clearance from the lung. J
Appl Physiol 81:1878, 1996.
70. Keller C, Brimacombe J: Bronchial mucus transport
velocity in paralyzed anesthetized patients: A com-
parison of the laryngeal mask airway and cuffed
tracheal tube. Anesth Analg 86:1280, 1998.
71. Raphael JH, Butt MW: Comparison of isoflurane
with propofol on respiratory cilia. Br J Anaesth
79:473, 1997.
72. Iida H, Matsuura S, Tanimoto K, Fukuda K: Diffe-
rential effects of intravenous anesthetics on ciliary
motility in cultured rat tracheal epithelial cells. Can
J Anaesth 53:242, 2006.
73. Raphael JH, Selwyn DA, Mottram SD, et al: Effects
of 3 MAC of halothane, enflurane and isoflurane on
cilia beat frequency of human nasal epithelium in
vitro. Br J Anaesth 76:116, 1996.
74. Raphael JH, Stupish J, Selwyn DA, et al: Recovery of
respiratory depression by inhalation anaesthetic
agents: An in vitro study using nasal turbinate
explants. Br J Anaesth 76:854, 1996.
75. Matsuura S, Shirakami G, Iada H, et al: The effect of
sevoflurane on ciliary motility in rat cultured tra-
cheal epithelial cells: A comparison with isoflurane
and halothane. Anesth Analg 102:1703, 2006.
76. Gamsu G, Singer MM, Vincent HH, et al: Postope-
rative impairment of mucous transport in the lung.
Am Rev Respir Dis 114:673, 1976.
77. Lichtiger M, Landa JF, Hirsch JA: Velocity of tra-
cheal mucus in anesthetized women undergoing
gynecologic surgery. Anesthesiology 42:753, 1975.
78. Konrad F, Marx T, Schraag M, et al: Combination
anesthesia and bronchial transport velocity. Effects
of anesthesia with isoflurane, fentanyl, vecuronium
and oxygen–nitrous oxide breathing on bronchial
mucus transport. Anaesthesist 46:403, 1997.
79. Konrad FX, Shreiber T, Brecht-Kraus D, et al: Bron-
chial mucus transport in chronic smokers and
nonsmokers during general anesthesia. J Clin
Anesth 5:375, 1993.
80. Rivero DH, Lorenzi-Filho G, Pazetti R, et al: Effects
of bronchial transection and reanastomosis on
mucociliary system. Chest 119:1510, 2001.
81. Ledowski T, Paech MJ, Patel B, Schug SA: Bronchial
mucus transport velocity in patients receiving pro-
pofol and remifentanil versus sevoflurane and remi-
fentanil anesthesia. Anesth Analg 102:1427, 2006.
82. Molliex S, Cresani B, Dureuil B, et al: Effects of
halothane on surfactant biosynthesis by rat alveolar
type II cells in primary culture. Anesthesiology
81:668, 1994.
83. Yang T, Li Y, Liu Q, et al: Isoflurane aggravates the
decrease of phosphatidylcholine synthesis in alveo-
lar type II cells induced by hydrogen peroxide.Drug
Metab Drug Interact 18:243, 2001.
84. Patel AB, Sokolowski J, Davidson BA, et al: Halo-
thane potentiation of hydrogen peroxide–induced
inhibition of surfactant synthesis: The role of type
II cell energy status. Anesth Analg 94:943, 2002.
85. Molliex S, Dureuil B, Aubier M, et al: Halothane
decreases Na,K-ATPase, and Na channel activity in
alveolar type II cells. Anesthesiology 88:1606, 1998.
86. Li Y, Yang T, Liu Q, et al: Effect of isoflurane on
proliferation and Na
+
. K
+
ATPase activity of alveolar
type II cells injured by hydrogen peroxide. Drug
Metabl Drug Interact 20:175, 2004.
87. Rezaiguai-Delclaux S, Jayr C, Feng Luo D, et al:
Halothane and isoflurane decrease alveolar epithe-
lial fluid clearance in rats. Anesthesiology 88:751,
1998.
88. Paugam-Burtz C, Molliex S, Lardeux B, et al: Diffe-
rential effects of halothane and thiopental on sur-
factant protein C messenger RNA in vivo and in
vitro in rats. Anesthesiology 93:805, 2000.
89. Sweeney M, Beddy D, Honner V, et al: Effects of
changes in pH and CO
2
on pulmonary arterial wall
tension are not endothelium dependent. J Appl
Physiol 85:2040, 1998.
90. Myers JL, Wizorek JJ, Myers AK, et al: Pulmonary
arterial endothelial dysfunction potentiates hyper-
capnic vasoconstriction and alters the response to
inhaled nitric oxide. Ann Thorac Surg 62:1677,
1996.
91. Hampl V, Herget J: Role of NO in the pathogenesis
of chronic pulmonary hypertension. Physiol Rev
80:1337, 2000.
92. Johns RA: New mechanisms for inhaled NO:
Release of an endogenous NO inhibitor? Anesthe-
siology 95:3, 2001.
93. Wang T, El Kabir D, Blaise G: Inhaled nitric oxide
in 2003: A review of its mechanisms of action. Can
J Anaesth 50:315, 2003.
94. Hambraeus-Jonzon K, Chen L, Freden F, et al: Pul-
monary vasoconstriction during regional nitric
oxide inhalation. Evidence of a blood-borne regu-
lator of nitric oxide synthase activity. Anesthesio-
logy 95:102, 2001.
95. Scherrer U, Vollenweider L, Delabays A, et al:
Inhaled nitric oxide for high-altitude pulmonary
edema. N Engl J Med 334:624, 1996.
96. Takahashi Y, Kobatashi H, Tanaka N, et al: Worse-
ning of hypoxemia with nitric oxide inhalation
during bronchospasm in humans. Respir Physiol
112:113, 1998.
97. Zanaboni P, Murray PA, Simon BA, et al: Selective
endothelial dysfunction in conscious dogs after car-
diopulmonary bypass. J Appl Physiol 82:1776,
1997.
98. Nachar RA, Pastene CM, Herrera EA, et al: Low-
dose inhaled carbon monoxide reduces pulmonary
vascular resistance during acute hypoxemia in adult
sheep. High Alt Med Biol 2:377, 2001.
99. Bryan RM Jr,You J, Golding EM, Marrelli SP: Endo-
thelium-derived hyperpolarizing factor. Anesthe-
siology 102:1261, 2005.
100. Galvin I, Drummond GB, Nirmalan M: Distribu-
tion of blood flow and ventilation in the lung:
Gravity is not the only factor. Br J Anaesth 98:420,
2007.
101. Preston JR: Clinical perspective of hypoxia-media-
ted pulmonary hypertension. Antioxid Redox
Signal 9:711, 2007.
102. Weissmann N, Sommer N, Schermuly RT, et al:
Oxygen sensors in hypoxic pulmonary vasocons-
triction. Cardiovasc Res 71:620, 2006.
103. Adding LC,Agvald P, Persson MG, et al: Regulation
of pulmonary nitric oxide by carbon dioxide is
intrinsic to the lung. Acta Anaesthesiol Scand
167:167, 1999.
104. Yamamoto Y, Nakano H, Ide H, et al: Role of airway
nitric oxide on the regulation of pulmonary circula-
tion by carbon dioxide. J Appl Physiol 91:1121, 2001.
105. Akata T: General anesthetics and vascular smooth
muscle. Direct actions of general anesthetics on
cellular mechanisms regulating vascular tone.Anes-
thesiology 106:365, 2007.
106. Gambone LM, Fujiwara Y, Murray PA: Endothe-
lium-dependent pulmonary vasodilation is selecti-
vely attenuated during isoflurane anesthesia. Am J
Physiol Heart Circ Physiol 272:H290, 1997.
107. Seki S, Sato K, Nakayama M, et al: Halothane and
enflurane attenuate pulmonary vasodilation media-
ted by adenosine triphosphate–sensitive potassium
channels compared to the conscious state.Anesthe-
siology 86:923, 1997.
108. Nakayama M, Kondo U, Murray PA: Pulmonary
vasodilator response to adenosine triphosphate–
sensitive potassium channel activation is attenuated
during desflurane but preserved during sevoflurane
anesthesia compared with the conscious state.
Anesthesiology 88:1023, 1998.
109. Lennon PF, Murray PA: Isoflurane and the pulmo-
nary vascular pressure-flow relation at baseline and
during sympathetic
a
- and
b
-adrenoceptor activa-
tion in chronically instrumented dogs. Anesthesio-
logy 82:723, 1995.
110. Sato K, Seki S, Murray PA: Effects of halothane and
enflurane anesthesia on sympathetic
b
-adrenore-
ceptor–mediated pulmonary vasodilation in chro-
nically instrumented dogs. Anesthesiology 97:478,
2002.
111. Liu R, Ishibe Y, Okazaki N, et al: Volatile anesthetics
regulate pulmonary vascular tension through diffe-
rent potassium channel subtypes in isolated rabbit
lungs. Can J Anaesth 50:301, 2003.
112. Fujiwara Y, Murray PA: Effects of isoflurane anes-
thesia on pulmonary vascular response to K
+
ATP
cannel activation and circulatory hypotension in
chronically instrumented dogs. Anesthesiology
90:799, 1999.
113. Su JY, Vo AC: Ca
2+
-calmodulin–dependent protein
kinase II plays a major role in halothane-induced
dose-dependent relaxation in the skinned pulmo-
nary artery. Anesthesiology 97:207, 2002.
114. Zhong L, Su JY: Isoflurane activates PKC and Ca
2+
-
calmodulin–dependent protein kinase II via MAP
kinase signaling in cultured vascular smoothmuscle
cells. Anesthesiology 96:148, 2002.
115. Lennon PF, Murray PA: Attenuated hypoxic pulmo-
nary vasoconstriction during isoflurane anesthesia
is abolished by cyclooxygenase inhibition in chro-
nically instrumented dogs. Anesthesiology 84:404,
1996.
116. Johns RA: Endothelium, anesthetics, and vascular
control. Anesthesiology 79:1381, 1993.
117. Marshall C, Marshall BE: Endothelium-derived
relaxing factor is not responsible for inhibition of
hypoxic pulmonary vasoconstriction by inhalatio-
nal anesthetics. Anesthesiology 73:441, 1990.
118. Marshall C, Marshall BE: Inhalational anesthetics
directly inhibit hypoxic pulmonary vasoconstric-
tion. Anesthesiology 79:A1238, 1993.
119. Yoshida K, Tewari S, Kirby T, et al: Halothane atte-
nuates acetylcholine-induced vasorelaxation and
cyclic GMP accumulation in human pulmonary
artery. Anesthesiology 87:A1104, 1997.
120. Gambone LM, Murray PA, Flavahan NA: Isoflurane
anesthesia attenuates endothelium-dependent pul-
monary vasorelaxation by inhibiting the synergistic
interaction between nitric oxide and prostacyclin.
Anesthesiology 86:936, 1997.
121. Liu R, Ueda M, Okazaki N, et al: Role of potassium
channels in isoflurane- and sevoflurane-induced
attenuation of hypoxic pulmonary vasoconstriction
in isolated perfused rabbit lungs. Anesthesiology
95:939, 2001.
122. Carter EP, Sato K, Morio Y, et al: Inhibition of K
Ca
channels restores blunted hypoxic pulmonary vaso-
constriction in rats with cirrhosis. Am J Physiol
Lung Cell Mol Physiol 279:L903, 2000.
123. Eisenkraft JB: Effects of anaesthetics on pulmonary
circulation. Br J Anaesth 65:63, 1990.
124. Lesitsky MA, Davis S, Murray PA: Preservation of
hypoxic pulmonary vasoconstriction during sevo-