Table of Contents Table of Contents
Previous Page  357 / 2894 Next Page
Information
Show Menu
Previous Page 357 / 2894 Next Page
Page Background

Farmacología pulmonar

357

12

Sección II

Farmacología y anestesia

© ELSEVIER. Fotocopiar sin autorización es un delito

67. Lund V: Nasal physiology: Neurochemical recep-

tors, nasal cycle, and ciliary action. Allergy Asthma

Proc 17:179, 1996.

68. Lindberg S, Cervin A, Runer T: Low levels of nasal

nitric oxide (NO) correlate to impaired mucociliary

function in the upper airways. Acta Otolaryngol

117:728, 1997.

69. Wagner EM, Foster WM: Importance of airway

blood flow on particle clearance from the lung. J

Appl Physiol 81:1878, 1996.

70. Keller C, Brimacombe J: Bronchial mucus transport

velocity in paralyzed anesthetized patients: A com-

parison of the laryngeal mask airway and cuffed

tracheal tube. Anesth Analg 86:1280, 1998.

71. Raphael JH, Butt MW: Comparison of isoflurane

with propofol on respiratory cilia. Br J Anaesth

79:473, 1997.

72. Iida H, Matsuura S, Tanimoto K, Fukuda K: Diffe-

rential effects of intravenous anesthetics on ciliary

motility in cultured rat tracheal epithelial cells. Can

J Anaesth 53:242, 2006.

73. Raphael JH, Selwyn DA, Mottram SD, et al: Effects

of 3 MAC of halothane, enflurane and isoflurane on

cilia beat frequency of human nasal epithelium in

vitro. Br J Anaesth 76:116, 1996.

74. Raphael JH, Stupish J, Selwyn DA, et al: Recovery of

respiratory depression by inhalation anaesthetic

agents: An in vitro study using nasal turbinate

explants. Br J Anaesth 76:854, 1996.

75. Matsuura S, Shirakami G, Iada H, et al: The effect of

sevoflurane on ciliary motility in rat cultured tra-

cheal epithelial cells: A comparison with isoflurane

and halothane. Anesth Analg 102:1703, 2006.

76. Gamsu G, Singer MM, Vincent HH, et al: Postope-

rative impairment of mucous transport in the lung.

Am Rev Respir Dis 114:673, 1976.

77. Lichtiger M, Landa JF, Hirsch JA: Velocity of tra-

cheal mucus in anesthetized women undergoing

gynecologic surgery. Anesthesiology 42:753, 1975.

78. Konrad F, Marx T, Schraag M, et al: Combination

anesthesia and bronchial transport velocity. Effects

of anesthesia with isoflurane, fentanyl, vecuronium

and oxygen–nitrous oxide breathing on bronchial

mucus transport. Anaesthesist 46:403, 1997.

79. Konrad FX, Shreiber T, Brecht-Kraus D, et al: Bron-

chial mucus transport in chronic smokers and

nonsmokers during general anesthesia. J Clin

Anesth 5:375, 1993.

80. Rivero DH, Lorenzi-Filho G, Pazetti R, et al: Effects

of bronchial transection and reanastomosis on

mucociliary system. Chest 119:1510, 2001.

81. Ledowski T, Paech MJ, Patel B, Schug SA: Bronchial

mucus transport velocity in patients receiving pro-

pofol and remifentanil versus sevoflurane and remi-

fentanil anesthesia. Anesth Analg 102:1427, 2006.

82. Molliex S, Cresani B, Dureuil B, et al: Effects of

halothane on surfactant biosynthesis by rat alveolar

type II cells in primary culture. Anesthesiology

81:668, 1994.

83. Yang T, Li Y, Liu Q, et al: Isoflurane aggravates the

decrease of phosphatidylcholine synthesis in alveo-

lar type II cells induced by hydrogen peroxide.Drug

Metab Drug Interact 18:243, 2001.

84. Patel AB, Sokolowski J, Davidson BA, et al: Halo-

thane potentiation of hydrogen peroxide–induced

inhibition of surfactant synthesis: The role of type

II cell energy status. Anesth Analg 94:943, 2002.

85. Molliex S, Dureuil B, Aubier M, et al: Halothane

decreases Na,K-ATPase, and Na channel activity in

alveolar type II cells. Anesthesiology 88:1606, 1998.

86. Li Y, Yang T, Liu Q, et al: Effect of isoflurane on

proliferation and Na

+

. K

+

ATPase activity of alveolar

type II cells injured by hydrogen peroxide. Drug

Metabl Drug Interact 20:175, 2004.

87. Rezaiguai-Delclaux S, Jayr C, Feng Luo D, et al:

Halothane and isoflurane decrease alveolar epithe-

lial fluid clearance in rats. Anesthesiology 88:751,

1998.

88. Paugam-Burtz C, Molliex S, Lardeux B, et al: Diffe-

rential effects of halothane and thiopental on sur-

factant protein C messenger RNA in vivo and in

vitro in rats. Anesthesiology 93:805, 2000.

89. Sweeney M, Beddy D, Honner V, et al: Effects of

changes in pH and CO

2

on pulmonary arterial wall

tension are not endothelium dependent. J Appl

Physiol 85:2040, 1998.

90. Myers JL, Wizorek JJ, Myers AK, et al: Pulmonary

arterial endothelial dysfunction potentiates hyper-

capnic vasoconstriction and alters the response to

inhaled nitric oxide. Ann Thorac Surg 62:1677,

1996.

91. Hampl V, Herget J: Role of NO in the pathogenesis

of chronic pulmonary hypertension. Physiol Rev

80:1337, 2000.

92. Johns RA: New mechanisms for inhaled NO:

Release of an endogenous NO inhibitor? Anesthe-

siology 95:3, 2001.

93. Wang T, El Kabir D, Blaise G: Inhaled nitric oxide

in 2003: A review of its mechanisms of action. Can

J Anaesth 50:315, 2003.

94. Hambraeus-Jonzon K, Chen L, Freden F, et al: Pul-

monary vasoconstriction during regional nitric

oxide inhalation. Evidence of a blood-borne regu-

lator of nitric oxide synthase activity. Anesthesio-

logy 95:102, 2001.

95. Scherrer U, Vollenweider L, Delabays A, et al:

Inhaled nitric oxide for high-altitude pulmonary

edema. N Engl J Med 334:624, 1996.

96. Takahashi Y, Kobatashi H, Tanaka N, et al: Worse-

ning of hypoxemia with nitric oxide inhalation

during bronchospasm in humans. Respir Physiol

112:113, 1998.

97. Zanaboni P, Murray PA, Simon BA, et al: Selective

endothelial dysfunction in conscious dogs after car-

diopulmonary bypass. J Appl Physiol 82:1776,

1997.

98. Nachar RA, Pastene CM, Herrera EA, et al: Low-

dose inhaled carbon monoxide reduces pulmonary

vascular resistance during acute hypoxemia in adult

sheep. High Alt Med Biol 2:377, 2001.

99. Bryan RM Jr,You J, Golding EM, Marrelli SP: Endo-

thelium-derived hyperpolarizing factor. Anesthe-

siology 102:1261, 2005.

100. Galvin I, Drummond GB, Nirmalan M: Distribu-

tion of blood flow and ventilation in the lung:

Gravity is not the only factor. Br J Anaesth 98:420,

2007.

101. Preston JR: Clinical perspective of hypoxia-media-

ted pulmonary hypertension. Antioxid Redox

Signal 9:711, 2007.

102. Weissmann N, Sommer N, Schermuly RT, et al:

Oxygen sensors in hypoxic pulmonary vasocons-

triction. Cardiovasc Res 71:620, 2006.

103. Adding LC,Agvald P, Persson MG, et al: Regulation

of pulmonary nitric oxide by carbon dioxide is

intrinsic to the lung. Acta Anaesthesiol Scand

167:167, 1999.

104. Yamamoto Y, Nakano H, Ide H, et al: Role of airway

nitric oxide on the regulation of pulmonary circula-

tion by carbon dioxide. J Appl Physiol 91:1121, 2001.

105. Akata T: General anesthetics and vascular smooth

muscle. Direct actions of general anesthetics on

cellular mechanisms regulating vascular tone.Anes-

thesiology 106:365, 2007.

106. Gambone LM, Fujiwara Y, Murray PA: Endothe-

lium-dependent pulmonary vasodilation is selecti-

vely attenuated during isoflurane anesthesia. Am J

Physiol Heart Circ Physiol 272:H290, 1997.

107. Seki S, Sato K, Nakayama M, et al: Halothane and

enflurane attenuate pulmonary vasodilation media-

ted by adenosine triphosphate–sensitive potassium

channels compared to the conscious state.Anesthe-

siology 86:923, 1997.

108. Nakayama M, Kondo U, Murray PA: Pulmonary

vasodilator response to adenosine triphosphate–

sensitive potassium channel activation is attenuated

during desflurane but preserved during sevoflurane

anesthesia compared with the conscious state.

Anesthesiology 88:1023, 1998.

109. Lennon PF, Murray PA: Isoflurane and the pulmo-

nary vascular pressure-flow relation at baseline and

during sympathetic

a

- and

b

-adrenoceptor activa-

tion in chronically instrumented dogs. Anesthesio-

logy 82:723, 1995.

110. Sato K, Seki S, Murray PA: Effects of halothane and

enflurane anesthesia on sympathetic

b

-adrenore-

ceptor–mediated pulmonary vasodilation in chro-

nically instrumented dogs. Anesthesiology 97:478,

2002.

111. Liu R, Ishibe Y, Okazaki N, et al: Volatile anesthetics

regulate pulmonary vascular tension through diffe-

rent potassium channel subtypes in isolated rabbit

lungs. Can J Anaesth 50:301, 2003.

112. Fujiwara Y, Murray PA: Effects of isoflurane anes-

thesia on pulmonary vascular response to K

+

ATP

cannel activation and circulatory hypotension in

chronically instrumented dogs. Anesthesiology

90:799, 1999.

113. Su JY, Vo AC: Ca

2+

-calmodulin–dependent protein

kinase II plays a major role in halothane-induced

dose-dependent relaxation in the skinned pulmo-

nary artery. Anesthesiology 97:207, 2002.

114. Zhong L, Su JY: Isoflurane activates PKC and Ca

2+

-

calmodulin–dependent protein kinase II via MAP

kinase signaling in cultured vascular smoothmuscle

cells. Anesthesiology 96:148, 2002.

115. Lennon PF, Murray PA: Attenuated hypoxic pulmo-

nary vasoconstriction during isoflurane anesthesia

is abolished by cyclooxygenase inhibition in chro-

nically instrumented dogs. Anesthesiology 84:404,

1996.

116. Johns RA: Endothelium, anesthetics, and vascular

control. Anesthesiology 79:1381, 1993.

117. Marshall C, Marshall BE: Endothelium-derived

relaxing factor is not responsible for inhibition of

hypoxic pulmonary vasoconstriction by inhalatio-

nal anesthetics. Anesthesiology 73:441, 1990.

118. Marshall C, Marshall BE: Inhalational anesthetics

directly inhibit hypoxic pulmonary vasoconstric-

tion. Anesthesiology 79:A1238, 1993.

119. Yoshida K, Tewari S, Kirby T, et al: Halothane atte-

nuates acetylcholine-induced vasorelaxation and

cyclic GMP accumulation in human pulmonary

artery. Anesthesiology 87:A1104, 1997.

120. Gambone LM, Murray PA, Flavahan NA: Isoflurane

anesthesia attenuates endothelium-dependent pul-

monary vasorelaxation by inhibiting the synergistic

interaction between nitric oxide and prostacyclin.

Anesthesiology 86:936, 1997.

121. Liu R, Ueda M, Okazaki N, et al: Role of potassium

channels in isoflurane- and sevoflurane-induced

attenuation of hypoxic pulmonary vasoconstriction

in isolated perfused rabbit lungs. Anesthesiology

95:939, 2001.

122. Carter EP, Sato K, Morio Y, et al: Inhibition of K

Ca

channels restores blunted hypoxic pulmonary vaso-

constriction in rats with cirrhosis. Am J Physiol

Lung Cell Mol Physiol 279:L903, 2000.

123. Eisenkraft JB: Effects of anaesthetics on pulmonary

circulation. Br J Anaesth 65:63, 1990.

124. Lesitsky MA, Davis S, Murray PA: Preservation of

hypoxic pulmonary vasoconstriction during sevo-