Table of Contents Table of Contents
Previous Page  395 / 2894 Next Page
Information
Show Menu
Previous Page 395 / 2894 Next Page
Page Background

kinase C-

d

activation independent of adenosine

triphosphate–sensitive mitochondrial channel

opening in sevoflurane-induced cardioprotection.

Anesthesiology 100:506–514, 2004.

111. Baines CP, Wang L, Cohen MV, et al: Protein tyro-

sine kinase is downstream of protein kinase C for

ischemic preconditioning’s anti-infarct effect in the

rabbit heart. J Mol Cell Cardiol 30:383–392, 1998.

112. Ping P, Zhang J, Cao X, et al: PKC-dependent acti-

vation of p44/p42 MAPKs during myocardial ische-

mia-reperfusion in conscious rabbits. Am J Physiol

276:H1468–H1481, 1999.

113. Ebel D, Mullenheim J, Sudkamp H, et al: Role of

tyrosine kinase in desflurane-induced preconditio-

ning. Anesthesiology 100:555–561, 2004.

114. Wang C, Weihrauch D, Schwabe DA, et al: Extra-

cellular signal–regulated kinases trigger isoflurane

preconditioning concomitant with upregulation of

hypoxia-inducible factor-1

a

and vascular endo-

thelial growth factor in rats. Anesth Analg

103:281–288, 2006.

115. Bilton RL, Booker GW: The subtle side to hypoxia

inducible factor (HIF

a

) regulation. Eur J Biochem

270:791–798, 2003.

116. Liu Y, Cox SR, Morita T, et al: Hypoxia regulates

vascular endothelial growth factor gene expres-

sion in endothelial cells. Identification of a 5

9

enhancer. Circ Res 77:638–643, 1995.

117. Matsunaga T, Warltier DC, Weihrauch D, et al:

Ischemia-induced coronary collateral growth is

dependent on vascular endothelial growth

factor and nitric oxide. Circulation 102:3098–

3103, 2000.

118. Kim CH, Cho YS, Chun YS, et al: Early expression

of myocardial HIF-1

a

in response to mechanical

stresses: Regulation by stretch-activated channels

and the phosphatidylinositol-3-kinase signaling

pathway. Circ Res 90:E25–E33, 2002.

119. Maulik N, Das DK: Potentiation of angiogenic res-

ponse by ischemia and hypoxic preconditioning of

the heart. J Cell Mol Med 6:13–24, 2002.

120. da Silva R, Grampp T, Pasch T, et al: Differential

activation of mitogen-activated protein kinases in

ischemic and anesthetic preconditioning. Anes-

thesiology 100:59–69, 2004.

121. Weber NC, Toma O, Wolter JI, et al: Mechanisms

of xenon- and isoflurane-induced preconditio-

ning. A potential link to the cytoskeleton via the

MAPKAPK-2/HSP27 pathway. Br J Pharmacol

146:445–455, 2005.

122. Costa AD, Garlid KD, West IC, et al: Protein kinase

G transmits the cardioprotection signal from cytosol

to mitochondria. Circ Res 97:329–336, 2005.

123. Cantley LC:The phosphoinositide 3-kinase pathway.

Science 296:1655–1657, 2002.

124. Raphael J, Rivo J, Gozal Y: Isoflurane-induced myo-

cardial preconditioning is dependent on phospha-

tidylinositol-3-kinase/Akt signaling. Br J Anaesth

95:756–763, 2005.

125. Raphael J, Abedat S, Rivo J, et al: Volatile anes-

thetic preconditioning attenuates myocardial

apoptosis in rabbits after regional ischemia and

reperfusion via Akt signaling and modulation of

Bcl-2 family proteins. J Pharmacol Exp Ther

318:186–194, 2006.

126. Jamnicki-Abegg M, Weihrauch D, Pagel PS, et al:

Isoflurane inhibits cardiac myocyte apoptosis

during oxidative and inflammatory stress by activa-

ting Akt and enhancing Bcl-2 expression. Anesthe-

siology 103:1006–1014, 2005.

127. Hausenloy DJ, Maddock HL, Baxter GF, et al:

Inhibiting mitochondrial permeability transi-

tion pore opening: A new paradigm for myocar-

dial

preconditioning?

Cardiovasc

Res

55:534–543, 2002.

128. Griffiths EJ, Halestrap AP: Mitochondrial non-speci-

fic pores remain closed during cardiac ischemia but

open upon reperfusion. Biochem J 307:93–98, 1995.

129. Rajesh KG, Sasaguri S, Zhitian Z, et al: Second

window of ischemic preconditioning regulates

mitochondrial permeability transition pore by

enhancing Bcl-2 expression.Cardiovasc Res 59:297–

307, 2003.

130. Piriou V, Chiari P, Gateau-Roesch O, et al: Desflu-

rane-induced preconditioning alters calcium-indu-

ced

mitochondrial

permeability

transition.

Anesthesiology 100:581–588, 2004.

131. Ljubkovic M, Mio Y, Marinovic J, et al: Isoflurane

preconditioning uncouples mitochondria and pro-

tects against hypoxia-reoxygenation. Am J Physiol

Cell Physiol 292:C1583–C1590, 2007.

132. Bolli R, Marban E: Molecular and cellular mecha-

nisms of myocardial stunning. Physiol Rev 79:609–

634, 1999.

133. Glantz L, Ginosar Y, Chevion M, et al: Halothane

prevents postischemic production of hydroxyl

radicals in the canine heart. Anesthesiology

86:440–447, 1997.

134. Novalija E, Varadarajan SG, Camara AK, et al:

Anesthetic preconditioning: Triggering role of

reactive oxygen and nitrogen species in isolated

hearts. Am J Physiol Heart Circ Physiol 283:H44–

H52, 2002.

135. Tritto I, D’Andrea D, Eramo N, et al: Oxygen radi-

cals can induce preconditioning in rabbit hearts.

Circ Res 80:743–748, 1997.

136. Baines CP, Goto M, Downey JM: Oxygen radicals

released during ischemic preconditioning contri-

bute to cardioprotection in the rabbit myocardium.

J Mol Cell Cardiol 29:207–216, 1997.

137. Smul TM, Lange M, Redel A, et al: Desflurane-indu-

ced preconditioning against myocardial infarction

is mediated by nitric oxide.Anesthesiology 105:719–

725, 2006.

138. Mullenheim J, Ebel D, Frassdorf J, et al: Isoflurane

preconditions myocardium against infarction via

release of free radicals. Anesthesiology 96:934–

940, 2002.

139. Pain T, Yang XM, Critz SD, et al: Opening of mito-

chondrial K

ATP

channels triggers the preconditioned

state by generating free radicals. Circ Res 87:460–

466, 2000.

140. Kulisz A, Chen N, Chandel NS, et al: Mitochon-

drial ROS initiate phosphorylation of p38 MAP

kinase during hypoxia in cardiomyocytes. Am J

Physiol Lung Cell Mol Physiol 282:L1324–L1329,

2002.

141. Nishida M, Maruyama Y, Tanaka R, et al: G alpha(i)

and G alpha(o) are target proteins of reactive oxygen

species. Nature 408:492–495, 2000.

142. Carroll R, Gant VA,Yellon DM: Mitochondrial K

ATP

channel opening protects a human atrial-derived

cell line by a mechanism involving free radical gene-

ration. Cardiovasc Res 51:691–700, 2001.

143. McPherson BC, Yao Z: Morphine mimics precon-

ditioning via free radical signals and mitochon-

drial K

ATP

channels in myocytes. Circulation

103:290–295, 2001.

144. Andrukhiv A, Costa AD, West IC, et al: Opening

mitoK

ATP

increases superoxide generation from

complex I of the electron transport chain. Am J

Physiol Heart Circ Physiol 291:H2067–H2074,

2006.

145. Zhang DX, Chen YF, Campbell WB, et al: Charac-

teristics and superoxide-induced activation of

reconstituted myocardial mitochondrial ATP-

sensitive potassium channels. Circ Res 89:1177–

1183, 2001.

146. Lebuffe G, Schumacker PT, Shao ZH, et al: ROS and

NO trigger early preconditioning: Relationship to

mitochondrial K

ATP

channel. Am J Physiol Heart

Circ Physiol 284:H299–H308, 2003.

147. Gross GJ, Fryer RM: Mitochodrial K

ATP

channels:

Triggers or distal effectors of ischemic or phar-

macological preconditioning? Circ Res 87:431–

433, 2000.

148. Kevin LG, Novalija E, Riess M, et al: Sevoflurane

exposure generates superoxide but leads to decrea-

sed superoxide during ischemia and reperfusion

in isolated hearts. Anesth Analg 96:949–955,

2003.

149. Zorov DB, Filburn CR, Klotz LO, et al: Reactive

oxygen species (ROS)-induced ROS release: A new

phenomenon accompanying induction of the mito-

chondrial permeability transition in cardiac myo-

cytes. J Exp Med 192:1001–1014, 2000.

150. Zorov DB, Juhaszova M, Sollott SJ: Mitochondrial

ROS-induced ROS release: An update and review.

Biochim Biophys Acta 1757:509–517, 2006.

151. Kim JS, Jin Y, Lemasters JJ: Reactive oxygen species,

but not Ca

2+

overloading, trigger pH- and mito-

chondrial permeability transition–dependent death

of adult rat myocytes after ischemia-reperfusion.

Am J Physiol Heart Circ Physiol 290:H2024–H2034,

2006.

152. Vanden Hoek TL, Becker LB, Shao Z, et al:

Reactive oxygen species released from mito-

chondria during brief hypoxia induce precon-

ditioning in cardiomyocytes. J Biol Chem

273:18092–18098, 1998.

153. Yao Z, Tong J, Tan X, et al: Role of reactive oxygen

species in acetylcholine-induced preconditioning in

cardiomyocytes. Am J Physiol Heart Circ Physiol

277:H2504–H2509, 1999.

154. Hanley PJ, Ray J, Brandt U, et al: Halothane, isoflu-

rane, and sevoflurane inhibit

NADH:ubiquinone

oxidoreductase (complex I) of cardiac mitochon-

dria. J Physiol 544:687–693, 2002.

155. Riess ML, Eells JT, Kevin KG, et al: Attenuation of

mitochondrial respiration by sevoflurane in iso-

lated cardiac mitochondria is mediated in part by

reactive oxygen species. Anesthesiology 100:498–

505, 2004.

156. Riess ML, Kevin LG, McCormick J, et al: Anesthetic

preconditioning: The role of free radicals in sevoflu-

rane-induced attenuation of mitochondrial electron

transport in Guinea pig isolated hearts. Anesth

Analg 100:46–53, 2005.

157. Ludwig LM, Tanaka K, Eells JT, et al: Isoflurane-

induced preconditioning is mediated by reactive

oxygen species generated from mitochondrial elec-

tron transport chain complex III. Anesth Analg

99:1308–1315, 2004.

158. Alcindor D, Krolikowski JG, Pagel PS, et al:

Cyclooxygenase-2 mediates ischemic, anesthetic,

and pharmacologic preconditioning in vivo. Anes-

thesiology 100:547–554, 2004.

159. Aikawa R, Komuro I, Yamazaki T, et al: Oxidative

stress activates extracellular signal–regulated

kinases through Src and Ras in cultured cardiac

myocytes of neonatal rats. J Clin Invest 100:1813–

1821, 1997.

160. Nishida M, Schey KL, Takagahara S, et al: Activation

mechanism of G

i

and G

o

by reactive oxygen species.

J Biol Chem 277:9036–9042, 2002.

161. Liu Y, Gutterman DD: Oxidative stress and potas-

sium channel function. Clin Exp Pharmacol Physiol

29:305–311, 2002.

162. Bolli R: The late phase of preconditioning. Circ Res

87:972–983, 2000.

163. Banerjee S, Tang XL, Qiu Y, et al: Nitroglycerin

induced late preconditioning against myocardial

stunning via a PKC-dependent pathway. Am J

Physiol Heart Circ Physiol 277:H2488–H2494,

1999.

164. Dawn B, Takano H, Tang XL, et al: Role of Src

protein tyrosine kinases in late preconditioning

against myocardial infarction. Am J Physiol Heart

Circ Physiol 283:H549–H556, 2002.

165. Shinmura K, Tang XL, Wang Y, et al: Cyclooxyge-

nase-2 mediates the cardioprotective effects of the

late phase of ischemic preconditioning in conscious

rabbits. Proc Natl Acad Sci USA 97:10197–10202,

2000.

Farmacología cardiovascular

395

13

Sección II

Farmacología y anestesia

© ELSEVIER. Fotocopiar sin autorización es un delito