kinase C-
d
activation independent of adenosine
triphosphate–sensitive mitochondrial channel
opening in sevoflurane-induced cardioprotection.
Anesthesiology 100:506–514, 2004.
111. Baines CP, Wang L, Cohen MV, et al: Protein tyro-
sine kinase is downstream of protein kinase C for
ischemic preconditioning’s anti-infarct effect in the
rabbit heart. J Mol Cell Cardiol 30:383–392, 1998.
112. Ping P, Zhang J, Cao X, et al: PKC-dependent acti-
vation of p44/p42 MAPKs during myocardial ische-
mia-reperfusion in conscious rabbits. Am J Physiol
276:H1468–H1481, 1999.
113. Ebel D, Mullenheim J, Sudkamp H, et al: Role of
tyrosine kinase in desflurane-induced preconditio-
ning. Anesthesiology 100:555–561, 2004.
114. Wang C, Weihrauch D, Schwabe DA, et al: Extra-
cellular signal–regulated kinases trigger isoflurane
preconditioning concomitant with upregulation of
hypoxia-inducible factor-1
a
and vascular endo-
thelial growth factor in rats. Anesth Analg
103:281–288, 2006.
115. Bilton RL, Booker GW: The subtle side to hypoxia
inducible factor (HIF
a
) regulation. Eur J Biochem
270:791–798, 2003.
116. Liu Y, Cox SR, Morita T, et al: Hypoxia regulates
vascular endothelial growth factor gene expres-
sion in endothelial cells. Identification of a 5
9
enhancer. Circ Res 77:638–643, 1995.
117. Matsunaga T, Warltier DC, Weihrauch D, et al:
Ischemia-induced coronary collateral growth is
dependent on vascular endothelial growth
factor and nitric oxide. Circulation 102:3098–
3103, 2000.
118. Kim CH, Cho YS, Chun YS, et al: Early expression
of myocardial HIF-1
a
in response to mechanical
stresses: Regulation by stretch-activated channels
and the phosphatidylinositol-3-kinase signaling
pathway. Circ Res 90:E25–E33, 2002.
119. Maulik N, Das DK: Potentiation of angiogenic res-
ponse by ischemia and hypoxic preconditioning of
the heart. J Cell Mol Med 6:13–24, 2002.
120. da Silva R, Grampp T, Pasch T, et al: Differential
activation of mitogen-activated protein kinases in
ischemic and anesthetic preconditioning. Anes-
thesiology 100:59–69, 2004.
121. Weber NC, Toma O, Wolter JI, et al: Mechanisms
of xenon- and isoflurane-induced preconditio-
ning. A potential link to the cytoskeleton via the
MAPKAPK-2/HSP27 pathway. Br J Pharmacol
146:445–455, 2005.
122. Costa AD, Garlid KD, West IC, et al: Protein kinase
G transmits the cardioprotection signal from cytosol
to mitochondria. Circ Res 97:329–336, 2005.
123. Cantley LC:The phosphoinositide 3-kinase pathway.
Science 296:1655–1657, 2002.
124. Raphael J, Rivo J, Gozal Y: Isoflurane-induced myo-
cardial preconditioning is dependent on phospha-
tidylinositol-3-kinase/Akt signaling. Br J Anaesth
95:756–763, 2005.
125. Raphael J, Abedat S, Rivo J, et al: Volatile anes-
thetic preconditioning attenuates myocardial
apoptosis in rabbits after regional ischemia and
reperfusion via Akt signaling and modulation of
Bcl-2 family proteins. J Pharmacol Exp Ther
318:186–194, 2006.
126. Jamnicki-Abegg M, Weihrauch D, Pagel PS, et al:
Isoflurane inhibits cardiac myocyte apoptosis
during oxidative and inflammatory stress by activa-
ting Akt and enhancing Bcl-2 expression. Anesthe-
siology 103:1006–1014, 2005.
127. Hausenloy DJ, Maddock HL, Baxter GF, et al:
Inhibiting mitochondrial permeability transi-
tion pore opening: A new paradigm for myocar-
dial
preconditioning?
Cardiovasc
Res
55:534–543, 2002.
128. Griffiths EJ, Halestrap AP: Mitochondrial non-speci-
fic pores remain closed during cardiac ischemia but
open upon reperfusion. Biochem J 307:93–98, 1995.
129. Rajesh KG, Sasaguri S, Zhitian Z, et al: Second
window of ischemic preconditioning regulates
mitochondrial permeability transition pore by
enhancing Bcl-2 expression.Cardiovasc Res 59:297–
307, 2003.
130. Piriou V, Chiari P, Gateau-Roesch O, et al: Desflu-
rane-induced preconditioning alters calcium-indu-
ced
mitochondrial
permeability
transition.
Anesthesiology 100:581–588, 2004.
131. Ljubkovic M, Mio Y, Marinovic J, et al: Isoflurane
preconditioning uncouples mitochondria and pro-
tects against hypoxia-reoxygenation. Am J Physiol
Cell Physiol 292:C1583–C1590, 2007.
132. Bolli R, Marban E: Molecular and cellular mecha-
nisms of myocardial stunning. Physiol Rev 79:609–
634, 1999.
133. Glantz L, Ginosar Y, Chevion M, et al: Halothane
prevents postischemic production of hydroxyl
radicals in the canine heart. Anesthesiology
86:440–447, 1997.
134. Novalija E, Varadarajan SG, Camara AK, et al:
Anesthetic preconditioning: Triggering role of
reactive oxygen and nitrogen species in isolated
hearts. Am J Physiol Heart Circ Physiol 283:H44–
H52, 2002.
135. Tritto I, D’Andrea D, Eramo N, et al: Oxygen radi-
cals can induce preconditioning in rabbit hearts.
Circ Res 80:743–748, 1997.
136. Baines CP, Goto M, Downey JM: Oxygen radicals
released during ischemic preconditioning contri-
bute to cardioprotection in the rabbit myocardium.
J Mol Cell Cardiol 29:207–216, 1997.
137. Smul TM, Lange M, Redel A, et al: Desflurane-indu-
ced preconditioning against myocardial infarction
is mediated by nitric oxide.Anesthesiology 105:719–
725, 2006.
138. Mullenheim J, Ebel D, Frassdorf J, et al: Isoflurane
preconditions myocardium against infarction via
release of free radicals. Anesthesiology 96:934–
940, 2002.
139. Pain T, Yang XM, Critz SD, et al: Opening of mito-
chondrial K
ATP
channels triggers the preconditioned
state by generating free radicals. Circ Res 87:460–
466, 2000.
140. Kulisz A, Chen N, Chandel NS, et al: Mitochon-
drial ROS initiate phosphorylation of p38 MAP
kinase during hypoxia in cardiomyocytes. Am J
Physiol Lung Cell Mol Physiol 282:L1324–L1329,
2002.
141. Nishida M, Maruyama Y, Tanaka R, et al: G alpha(i)
and G alpha(o) are target proteins of reactive oxygen
species. Nature 408:492–495, 2000.
142. Carroll R, Gant VA,Yellon DM: Mitochondrial K
ATP
channel opening protects a human atrial-derived
cell line by a mechanism involving free radical gene-
ration. Cardiovasc Res 51:691–700, 2001.
143. McPherson BC, Yao Z: Morphine mimics precon-
ditioning via free radical signals and mitochon-
drial K
ATP
channels in myocytes. Circulation
103:290–295, 2001.
144. Andrukhiv A, Costa AD, West IC, et al: Opening
mitoK
ATP
increases superoxide generation from
complex I of the electron transport chain. Am J
Physiol Heart Circ Physiol 291:H2067–H2074,
2006.
145. Zhang DX, Chen YF, Campbell WB, et al: Charac-
teristics and superoxide-induced activation of
reconstituted myocardial mitochondrial ATP-
sensitive potassium channels. Circ Res 89:1177–
1183, 2001.
146. Lebuffe G, Schumacker PT, Shao ZH, et al: ROS and
NO trigger early preconditioning: Relationship to
mitochondrial K
ATP
channel. Am J Physiol Heart
Circ Physiol 284:H299–H308, 2003.
147. Gross GJ, Fryer RM: Mitochodrial K
ATP
channels:
Triggers or distal effectors of ischemic or phar-
macological preconditioning? Circ Res 87:431–
433, 2000.
148. Kevin LG, Novalija E, Riess M, et al: Sevoflurane
exposure generates superoxide but leads to decrea-
sed superoxide during ischemia and reperfusion
in isolated hearts. Anesth Analg 96:949–955,
2003.
149. Zorov DB, Filburn CR, Klotz LO, et al: Reactive
oxygen species (ROS)-induced ROS release: A new
phenomenon accompanying induction of the mito-
chondrial permeability transition in cardiac myo-
cytes. J Exp Med 192:1001–1014, 2000.
150. Zorov DB, Juhaszova M, Sollott SJ: Mitochondrial
ROS-induced ROS release: An update and review.
Biochim Biophys Acta 1757:509–517, 2006.
151. Kim JS, Jin Y, Lemasters JJ: Reactive oxygen species,
but not Ca
2+
overloading, trigger pH- and mito-
chondrial permeability transition–dependent death
of adult rat myocytes after ischemia-reperfusion.
Am J Physiol Heart Circ Physiol 290:H2024–H2034,
2006.
152. Vanden Hoek TL, Becker LB, Shao Z, et al:
Reactive oxygen species released from mito-
chondria during brief hypoxia induce precon-
ditioning in cardiomyocytes. J Biol Chem
273:18092–18098, 1998.
153. Yao Z, Tong J, Tan X, et al: Role of reactive oxygen
species in acetylcholine-induced preconditioning in
cardiomyocytes. Am J Physiol Heart Circ Physiol
277:H2504–H2509, 1999.
154. Hanley PJ, Ray J, Brandt U, et al: Halothane, isoflu-
rane, and sevoflurane inhibit
NADH:ubiquinoneoxidoreductase (complex I) of cardiac mitochon-
dria. J Physiol 544:687–693, 2002.
155. Riess ML, Eells JT, Kevin KG, et al: Attenuation of
mitochondrial respiration by sevoflurane in iso-
lated cardiac mitochondria is mediated in part by
reactive oxygen species. Anesthesiology 100:498–
505, 2004.
156. Riess ML, Kevin LG, McCormick J, et al: Anesthetic
preconditioning: The role of free radicals in sevoflu-
rane-induced attenuation of mitochondrial electron
transport in Guinea pig isolated hearts. Anesth
Analg 100:46–53, 2005.
157. Ludwig LM, Tanaka K, Eells JT, et al: Isoflurane-
induced preconditioning is mediated by reactive
oxygen species generated from mitochondrial elec-
tron transport chain complex III. Anesth Analg
99:1308–1315, 2004.
158. Alcindor D, Krolikowski JG, Pagel PS, et al:
Cyclooxygenase-2 mediates ischemic, anesthetic,
and pharmacologic preconditioning in vivo. Anes-
thesiology 100:547–554, 2004.
159. Aikawa R, Komuro I, Yamazaki T, et al: Oxidative
stress activates extracellular signal–regulated
kinases through Src and Ras in cultured cardiac
myocytes of neonatal rats. J Clin Invest 100:1813–
1821, 1997.
160. Nishida M, Schey KL, Takagahara S, et al: Activation
mechanism of G
i
and G
o
by reactive oxygen species.
J Biol Chem 277:9036–9042, 2002.
161. Liu Y, Gutterman DD: Oxidative stress and potas-
sium channel function. Clin Exp Pharmacol Physiol
29:305–311, 2002.
162. Bolli R: The late phase of preconditioning. Circ Res
87:972–983, 2000.
163. Banerjee S, Tang XL, Qiu Y, et al: Nitroglycerin
induced late preconditioning against myocardial
stunning via a PKC-dependent pathway. Am J
Physiol Heart Circ Physiol 277:H2488–H2494,
1999.
164. Dawn B, Takano H, Tang XL, et al: Role of Src
protein tyrosine kinases in late preconditioning
against myocardial infarction. Am J Physiol Heart
Circ Physiol 283:H549–H556, 2002.
165. Shinmura K, Tang XL, Wang Y, et al: Cyclooxyge-
nase-2 mediates the cardioprotective effects of the
late phase of ischemic preconditioning in conscious
rabbits. Proc Natl Acad Sci USA 97:10197–10202,
2000.
Farmacología cardiovascular
395
13
Sección II
Farmacología y anestesia
© ELSEVIER. Fotocopiar sin autorización es un delito