Table of Contents Table of Contents
Previous Page  397 / 2894 Next Page
Information
Show Menu
Previous Page 397 / 2894 Next Page
Page Background

preconditioning through phosphatidylinositol-3-

kinase–dependent pathway is cardioprotective. Circ

Res 90:377–379, 2002.

219. Pagel PS, Krolikowski JG, Neff DA, et al: Inhibition

of glycogen synthase kinase potentiates isoflurane-

induced protection against myocardial infarction

during early reperfusion in vivo. Anesth Analg

102:1348–1354, 2006.

220. Zha J, Harada H, Yang E, et al: Serine phosphoryla-

tion of death agonist BAD in response to survival

factor results in binding to 14-3-3 not BCL-X(L).

Cell 87:619–628, 1996.

221. Tsuruta F,Masuyama N,

GotohY:The

phosphatidyli-

nositol 3-kinase (PI3K)-Akt pathway suppresses Bax

translocation to mitochondria. J Biol Chem

277:14040–14047, 2002.

222. Cardone MH, Roy N, Stennicke HR, et al: Regula-

tion of cell death protease caspase-9 by phos-

phorylation. Science 282:1318–1321, 1998.

223. Watcharasti P, Bijur GN, Song L, et al: Glycogen

synthase kinase-3

b

(GSK3

b

) binds to and promo-

tes the actions of p53. J Biol Chem 278:48872–

48879, 2003.

224. Hoshi M, Sato M, Kondo S, et al: Different localiza-

tion of tau protein kinase I/glycogen synthase kina-

se-3

b

from glycogen synthase kinase-3

a

in

cerebellum mitochondria. J Biochem (Tokyo)

118:683–685, 1995.

225. Chipuk JE, Kuwana T, Bouchier-Hayes L, et al:

Direct activation of Bax by p53 mediates mitochon-

drial membrane permeabilization and apoptosis.

Science 303:1010–1014, 2004.

226. Vousden KH: Activation of the p53 tumor suppres-

sor protein. Biochem Biophys Acta 1602:47–59, 2002.

227. Vousden KH, Lu X: Live or let die: The cell’s res-

ponse to p53. Nat Rev Cancer 2:594–604, 2002.

228. Maulik N, Sasaki N, Addya S, et al: Regulation of

cardiomyocyte apoptosis by redox-sensitive trans-

cription factors. FEBS Lett 485:7–12, 2000.

229. Tomasevic G, Shamloo M, Israeli D, et al: Activation

of p53 and its target genes p21WAF1/Cip1 and

PAG608/Wig-1 in ischemic preconditioning. Brain

Res Mol Brain Res 70:304–313, 1999.

230. Mocanu MM, Yellon DM: p53 down-regulation: A

new molecular mechanism involved in ischaemic

preconditioning. FEBS Lett 555:302–306, 2003.

231. Ogawara Y, Kishishita S, Obata T, et al: Akt enhances

Mdm2-mediated ubiquitination and degradation of

p53. J Biol Chem 277:21843–21850, 2002.

232. Culmsee C, Zhu X,Yu Q-S, et al: A synthetic inhibi-

tor of p53 protects neurons against death induced

by ischemic and excitotoxic insults, and amyloid

b

-peptide. J Neurochem 77:220–228, 2001.

233. Matsusaka H, Ide T, Matsushima S, et al: Targeted

deletion of p53 prevents cardiac rupture after myo-

cardial infarction in mice. Cardiovasc Res 70:457–

465, 2006.

234. Venkatapuram S, Wang C, Krolikowski JG, et al:

Inhibition of apoptotic protein p53 lowers the

threshold of isoflurane-induced cardioprotection

during early reperfusion in rabbits. Anesth Analg

103:1400–1405, 2006.

235. Fischer U, Schulze-Osthoff K: New approaches and

therapeutics targeting apoptosis in disease. Pharma-

col Rev 57:187–215, 2005.

236. Chen Z, Chua CC, Ho YS, et al: Overexpression of

Bcl-2 attenuates apoptosis and protects against

myocardial I/R injury in transgenic mice. Am J

Physiol Heart Circ Physiol 280:H2313–H2320,

2001.

237. Wang C, Neff DA, Krolikowski JG, et al: The

influence of B-cell lymphoma 2 protein, an antia-

poptotic regulator of mitochondrial permeability

transition, on isoflurane-induced and ischemic

postconditioning in rabbits. Anesth Analg

102:1355–1360, 2006.

238. Adams JM, Cory S: The Bcl-2 protein family: Arbi-

ters of cell survival. Science 281:1322–1326, 1998.

239. Reiz S: Nitrous oxide augments the systemic and

coronary haemodynamic effects of isoflurane in

patients with ischaemic heart disease. Acta Anaes-

thesiol Scand 27:464–469, 1983.

240. Tuman KJ, McCarthy RJ, Spiess BD, et al: Does

choice of anesthetic agent significantly affect

outcome after coronary artery surgery? Anesthe-

siology 70:189–198, 1989.

241. Slogoff S, Keats AS: Randomized trial of primary

anesthetic agents on outcome of coronary artery

bypass operations. Anesthesiology 70:179–188,

1989.

242. Mangano DT, Layug EL, Wallace A, et al: Effect of

atenolol on mortality and cardiovascular morbidity

after noncardiac surgery. Multicenter Study of

Perioperative Ischemia Group. N Engl J Med

335:1713–1720, 1996.

243. Helman JD, Leung JM, Bellows WH, et al: The risk

of myocardial ischemia in patients receiving desflu-

rane versus sufentanil anesthesia for coronary artery

bypass graft surgery. The S. P. I Research Group.

Anesthesiology 77:47–62, 1992.

244. Buffington CW, Davis KB, Gillispie S, et al: The pre-

valance of steal-prone coronary anatomy in patients

with coronary artery disease: An analysis of the

Coronary Artery Surgery Study Registry. Anesthe-

siology 69:721–727, 1988.

245. Slogoff S,Keats AS,DearWE,et al: Steal-prone coro-

nary anatomy and myocardial ischemia associated

with four primary anesthetic agents in humans.

Anesth Analg 72:22–27, 1991.

246. Belhomme D, Peynet J, Louzy M, et al: Evidence

for preconditioning by isoflurane in coronary

artery bypass graft surgery. Circulation

100:II340–II344, 1999.

247. Penta de Peppo A, Polisca P, Tomai F, et al: Recovery

of LV contractility in man is enhanced by preische-

mic administration of enflurane. Ann Thorac Surg

68:112–118, 1999.

248. De Hert SG, ten Broecke PW, Mertens E, et al: Sevo-

flurane but not propofol preserves myocardial

function in coronary surgery patients. Anesthesio-

logy 97:42–49, 2002.

249. Cromheecke S, Pepermans V, Hendrickx E, et al:

Cardioprotective properties of sevoflurane in

patients undergoing aortic valve replacement with

cardiopulmonary bypass. Anesth Analg 103:289–

296, 2006.

250. De Hert SG, Cromheecke S, ten Broecke PW, et al:

Effects of propofol, desflurane, and sevoflurane on

recovery of myocardial function after coronary

artery surgery in elderly high-risk patients. Anes-

thesiology 99:314–323, 2003.

251. De Hert SG, Van der Linden PJ, Cromheecke S, et

al: Cardioprotective properties of sevoflurane in

patients undergoing coronary surgery with cardio-

pulmonary bypass are related to the modalities of

its administration. Anesthesiology 101:299–310,

2004.

252. Cromheecke S, ten Broecke PW, Hendrickx E, et al:

Incidence of atrial fibrillation early after cardiac

surgery: Can choice of the anesthetic regimen

influence the incidence? Acta Anaesthesiol Belg

56:147–154, 2005.

253. Julier K, da Silva R, Garcia C, et al: Preconditioning

by sevoflurane decreases biochemical markers for

myocardial and renal dysfunction in coronary

artery bypass graft surgery: A double-blinded, pla-

cebo-controlled multicenter study. Anesthesiology

98:1315–1327, 2003.

254. Lorsomradee S,Cromheecke S,Lorsomradee S,et al:

Effects of sevoflurane on biochemical markers of

hepatic and renal dysfunction after coronary artery

surgery. J Cardiothorac Vasc Anesth 20:684–690,

2006.

255. Garcia C, Julier K, Bestmann L, et al: Preconditio-

ning with sevoflurane decreases PECAM-1 expres-

sion and improves one-year cardiovascular outcome

in coronary artery bypass graft surgery. Br J Anaesth

94:159–165, 2005.

256. Lucchinetti E, Ambrosio S, Aguirre J, et al: Sevoflu-

rane inhalation at sedative concentrations provides

endothelial protection against ischemia-reperfusion

injury in humans. Anesthesiology 106:262–268,

2007.

257. Lucchinetti E, Hofer C, Bestmann L, et al: Gene

regulatory control of myocardial energy metabolism

predicts postoperative cardiac function in patients

undergoing off-pump coronary artery bypass graft

surgery: Inhalational versus intravenous anesthetics.

Anesthesiology 106:444–457, 2007.

258. Guarracino F, Landoni G, Tritapepe L, et al: Myocar-

dial damage prevented by volatile anesthetics: A

multicenter randomized controlled study. J Cardio-

thorac Vasc Anesth 20:477–483, 2006.

259. Yu CH, Beattie WS: The effects of volatile anesthe-

tics on cardiac ischemic complications and mor-

tality in CABG: A meta-analysis. Can J Anesth

53:906–918, 2006.

260. Ebert TJ, Seagard JL, Hopp FA Jr: Autonomic

nervous system: Measurement and response under

anesthesia. In Yaksh TL, Lynch C III, Zapol WM, et

al (eds): Anesthesia: Biologic Foundations. Philadel-

phia, Lippincott-Raven, 1998, pp 1233–1255.

261. Ebert TJ, Muzi M, Lopatka CW: Neurocirculatory

responses to sevoflurane in humans: A comparison

to desflurane. Anesthesiology 83:88–95, 1995.

262. Weiskopf RB, Moore MA, Eger EI II, et al: Rapid

increase in desflurane concentration is associated

with greater transient cardiovascular stimulation

than rapid increase in isoflurane concentration in

humans. Anesthesiology 80:1035–1045, 1994.

263. Ebert TJ: Differential effects of nitrous oxide on

baroreflex control of heart rate and peripheral sym-

pathetic nerve activity in humans. Anesthesiology

72:16–22, 1990.

264. Pagel PS, Kampine JP, Schmeling WT, et al: Effects

of nitrous oxide on myocardial contractility as eva-

luated by the preload recruitable stroke work rela-

tionship in chronically instrumented dogs.

Anesthesiology 73:1148–1157, 1990.

265. Messina AG,Yao F-S, Canning H, et al: The effect of

nitrous oxide on left ventricular pump performance

and contractility in patients with coronary artery

disease: Effect of preoperative ejection fraction.

Anesth Analg 77:954–962, 1993.

266. Carton EG, Wanek LA, Housmans PR: Effects of

nitrous oxide on contractility, relaxation and the

intracellular calcium transient of isolated mamma-

lian ventricular myocardium. J Pharmacol Exp Ther

257:843–849, 1991.

267. Houltz E, Caidahl K, Hellstrom A, et al: The effects

of nitrous oxide on left ventricular systolic and dias-

tolic performance before and after cardiopulmonary

bypass: Evaluation by computer-assisted two-di-

mensional and Doppler echocardiography in

patients undergoing coronary artery surgery.Anesth

Analg 81:243–248, 1995.

268. Carton EG, Housmans PR: Role of transsarcolem-

mal Ca

2+

entry in the negative inotropic effects of

nitrous oxide in isolated ferret myocardium.Anesth

Analg 74:575–579, 1992.

269. Stowe DF, Monroe SM, Marijic J, et al: Effects of

nitrous oxide on contractile function and metabo-

lism of the isolated heart. Anesthesiology 73:1220–

1226, 1990.

270. Cason BA, Demas KA, Mazer CD, et al: Effects of

nitrous oxide on coronary pressure and regional

contractile function in experimental myocardial

ischemia. Anesth Analg 72:604–611, 1991.

271. Siker D, Pagel PS, Pelc LR, et al: Nitrous oxide

impairs functional recovery of stunned myocar-

dium in barbiturate-anesthetized, acutely instru-

mented dogs. Anesth Analg 75:539–548, 1992.

272. Weber NC, Toma O, Awan S, et al: Effects of nitrous

oxide on the rat heart in vivo. Another inhalational

Farmacología cardiovascular

397

13

Sección II

Farmacología y anestesia

© ELSEVIER. Fotocopiar sin autorización es un delito