preconditioning through phosphatidylinositol-3-
kinase–dependent pathway is cardioprotective. Circ
Res 90:377–379, 2002.
219. Pagel PS, Krolikowski JG, Neff DA, et al: Inhibition
of glycogen synthase kinase potentiates isoflurane-
induced protection against myocardial infarction
during early reperfusion in vivo. Anesth Analg
102:1348–1354, 2006.
220. Zha J, Harada H, Yang E, et al: Serine phosphoryla-
tion of death agonist BAD in response to survival
factor results in binding to 14-3-3 not BCL-X(L).
Cell 87:619–628, 1996.
221. Tsuruta F,Masuyama N,
GotohY:Thephosphatidyli-
nositol 3-kinase (PI3K)-Akt pathway suppresses Bax
translocation to mitochondria. J Biol Chem
277:14040–14047, 2002.
222. Cardone MH, Roy N, Stennicke HR, et al: Regula-
tion of cell death protease caspase-9 by phos-
phorylation. Science 282:1318–1321, 1998.
223. Watcharasti P, Bijur GN, Song L, et al: Glycogen
synthase kinase-3
b
(GSK3
b
) binds to and promo-
tes the actions of p53. J Biol Chem 278:48872–
48879, 2003.
224. Hoshi M, Sato M, Kondo S, et al: Different localiza-
tion of tau protein kinase I/glycogen synthase kina-
se-3
b
from glycogen synthase kinase-3
a
in
cerebellum mitochondria. J Biochem (Tokyo)
118:683–685, 1995.
225. Chipuk JE, Kuwana T, Bouchier-Hayes L, et al:
Direct activation of Bax by p53 mediates mitochon-
drial membrane permeabilization and apoptosis.
Science 303:1010–1014, 2004.
226. Vousden KH: Activation of the p53 tumor suppres-
sor protein. Biochem Biophys Acta 1602:47–59, 2002.
227. Vousden KH, Lu X: Live or let die: The cell’s res-
ponse to p53. Nat Rev Cancer 2:594–604, 2002.
228. Maulik N, Sasaki N, Addya S, et al: Regulation of
cardiomyocyte apoptosis by redox-sensitive trans-
cription factors. FEBS Lett 485:7–12, 2000.
229. Tomasevic G, Shamloo M, Israeli D, et al: Activation
of p53 and its target genes p21WAF1/Cip1 and
PAG608/Wig-1 in ischemic preconditioning. Brain
Res Mol Brain Res 70:304–313, 1999.
230. Mocanu MM, Yellon DM: p53 down-regulation: A
new molecular mechanism involved in ischaemic
preconditioning. FEBS Lett 555:302–306, 2003.
231. Ogawara Y, Kishishita S, Obata T, et al: Akt enhances
Mdm2-mediated ubiquitination and degradation of
p53. J Biol Chem 277:21843–21850, 2002.
232. Culmsee C, Zhu X,Yu Q-S, et al: A synthetic inhibi-
tor of p53 protects neurons against death induced
by ischemic and excitotoxic insults, and amyloid
b
-peptide. J Neurochem 77:220–228, 2001.
233. Matsusaka H, Ide T, Matsushima S, et al: Targeted
deletion of p53 prevents cardiac rupture after myo-
cardial infarction in mice. Cardiovasc Res 70:457–
465, 2006.
234. Venkatapuram S, Wang C, Krolikowski JG, et al:
Inhibition of apoptotic protein p53 lowers the
threshold of isoflurane-induced cardioprotection
during early reperfusion in rabbits. Anesth Analg
103:1400–1405, 2006.
235. Fischer U, Schulze-Osthoff K: New approaches and
therapeutics targeting apoptosis in disease. Pharma-
col Rev 57:187–215, 2005.
236. Chen Z, Chua CC, Ho YS, et al: Overexpression of
Bcl-2 attenuates apoptosis and protects against
myocardial I/R injury in transgenic mice. Am J
Physiol Heart Circ Physiol 280:H2313–H2320,
2001.
237. Wang C, Neff DA, Krolikowski JG, et al: The
influence of B-cell lymphoma 2 protein, an antia-
poptotic regulator of mitochondrial permeability
transition, on isoflurane-induced and ischemic
postconditioning in rabbits. Anesth Analg
102:1355–1360, 2006.
238. Adams JM, Cory S: The Bcl-2 protein family: Arbi-
ters of cell survival. Science 281:1322–1326, 1998.
239. Reiz S: Nitrous oxide augments the systemic and
coronary haemodynamic effects of isoflurane in
patients with ischaemic heart disease. Acta Anaes-
thesiol Scand 27:464–469, 1983.
240. Tuman KJ, McCarthy RJ, Spiess BD, et al: Does
choice of anesthetic agent significantly affect
outcome after coronary artery surgery? Anesthe-
siology 70:189–198, 1989.
241. Slogoff S, Keats AS: Randomized trial of primary
anesthetic agents on outcome of coronary artery
bypass operations. Anesthesiology 70:179–188,
1989.
242. Mangano DT, Layug EL, Wallace A, et al: Effect of
atenolol on mortality and cardiovascular morbidity
after noncardiac surgery. Multicenter Study of
Perioperative Ischemia Group. N Engl J Med
335:1713–1720, 1996.
243. Helman JD, Leung JM, Bellows WH, et al: The risk
of myocardial ischemia in patients receiving desflu-
rane versus sufentanil anesthesia for coronary artery
bypass graft surgery. The S. P. I Research Group.
Anesthesiology 77:47–62, 1992.
244. Buffington CW, Davis KB, Gillispie S, et al: The pre-
valance of steal-prone coronary anatomy in patients
with coronary artery disease: An analysis of the
Coronary Artery Surgery Study Registry. Anesthe-
siology 69:721–727, 1988.
245. Slogoff S,Keats AS,DearWE,et al: Steal-prone coro-
nary anatomy and myocardial ischemia associated
with four primary anesthetic agents in humans.
Anesth Analg 72:22–27, 1991.
246. Belhomme D, Peynet J, Louzy M, et al: Evidence
for preconditioning by isoflurane in coronary
artery bypass graft surgery. Circulation
100:II340–II344, 1999.
247. Penta de Peppo A, Polisca P, Tomai F, et al: Recovery
of LV contractility in man is enhanced by preische-
mic administration of enflurane. Ann Thorac Surg
68:112–118, 1999.
248. De Hert SG, ten Broecke PW, Mertens E, et al: Sevo-
flurane but not propofol preserves myocardial
function in coronary surgery patients. Anesthesio-
logy 97:42–49, 2002.
249. Cromheecke S, Pepermans V, Hendrickx E, et al:
Cardioprotective properties of sevoflurane in
patients undergoing aortic valve replacement with
cardiopulmonary bypass. Anesth Analg 103:289–
296, 2006.
250. De Hert SG, Cromheecke S, ten Broecke PW, et al:
Effects of propofol, desflurane, and sevoflurane on
recovery of myocardial function after coronary
artery surgery in elderly high-risk patients. Anes-
thesiology 99:314–323, 2003.
251. De Hert SG, Van der Linden PJ, Cromheecke S, et
al: Cardioprotective properties of sevoflurane in
patients undergoing coronary surgery with cardio-
pulmonary bypass are related to the modalities of
its administration. Anesthesiology 101:299–310,
2004.
252. Cromheecke S, ten Broecke PW, Hendrickx E, et al:
Incidence of atrial fibrillation early after cardiac
surgery: Can choice of the anesthetic regimen
influence the incidence? Acta Anaesthesiol Belg
56:147–154, 2005.
253. Julier K, da Silva R, Garcia C, et al: Preconditioning
by sevoflurane decreases biochemical markers for
myocardial and renal dysfunction in coronary
artery bypass graft surgery: A double-blinded, pla-
cebo-controlled multicenter study. Anesthesiology
98:1315–1327, 2003.
254. Lorsomradee S,Cromheecke S,Lorsomradee S,et al:
Effects of sevoflurane on biochemical markers of
hepatic and renal dysfunction after coronary artery
surgery. J Cardiothorac Vasc Anesth 20:684–690,
2006.
255. Garcia C, Julier K, Bestmann L, et al: Preconditio-
ning with sevoflurane decreases PECAM-1 expres-
sion and improves one-year cardiovascular outcome
in coronary artery bypass graft surgery. Br J Anaesth
94:159–165, 2005.
256. Lucchinetti E, Ambrosio S, Aguirre J, et al: Sevoflu-
rane inhalation at sedative concentrations provides
endothelial protection against ischemia-reperfusion
injury in humans. Anesthesiology 106:262–268,
2007.
257. Lucchinetti E, Hofer C, Bestmann L, et al: Gene
regulatory control of myocardial energy metabolism
predicts postoperative cardiac function in patients
undergoing off-pump coronary artery bypass graft
surgery: Inhalational versus intravenous anesthetics.
Anesthesiology 106:444–457, 2007.
258. Guarracino F, Landoni G, Tritapepe L, et al: Myocar-
dial damage prevented by volatile anesthetics: A
multicenter randomized controlled study. J Cardio-
thorac Vasc Anesth 20:477–483, 2006.
259. Yu CH, Beattie WS: The effects of volatile anesthe-
tics on cardiac ischemic complications and mor-
tality in CABG: A meta-analysis. Can J Anesth
53:906–918, 2006.
260. Ebert TJ, Seagard JL, Hopp FA Jr: Autonomic
nervous system: Measurement and response under
anesthesia. In Yaksh TL, Lynch C III, Zapol WM, et
al (eds): Anesthesia: Biologic Foundations. Philadel-
phia, Lippincott-Raven, 1998, pp 1233–1255.
261. Ebert TJ, Muzi M, Lopatka CW: Neurocirculatory
responses to sevoflurane in humans: A comparison
to desflurane. Anesthesiology 83:88–95, 1995.
262. Weiskopf RB, Moore MA, Eger EI II, et al: Rapid
increase in desflurane concentration is associated
with greater transient cardiovascular stimulation
than rapid increase in isoflurane concentration in
humans. Anesthesiology 80:1035–1045, 1994.
263. Ebert TJ: Differential effects of nitrous oxide on
baroreflex control of heart rate and peripheral sym-
pathetic nerve activity in humans. Anesthesiology
72:16–22, 1990.
264. Pagel PS, Kampine JP, Schmeling WT, et al: Effects
of nitrous oxide on myocardial contractility as eva-
luated by the preload recruitable stroke work rela-
tionship in chronically instrumented dogs.
Anesthesiology 73:1148–1157, 1990.
265. Messina AG,Yao F-S, Canning H, et al: The effect of
nitrous oxide on left ventricular pump performance
and contractility in patients with coronary artery
disease: Effect of preoperative ejection fraction.
Anesth Analg 77:954–962, 1993.
266. Carton EG, Wanek LA, Housmans PR: Effects of
nitrous oxide on contractility, relaxation and the
intracellular calcium transient of isolated mamma-
lian ventricular myocardium. J Pharmacol Exp Ther
257:843–849, 1991.
267. Houltz E, Caidahl K, Hellstrom A, et al: The effects
of nitrous oxide on left ventricular systolic and dias-
tolic performance before and after cardiopulmonary
bypass: Evaluation by computer-assisted two-di-
mensional and Doppler echocardiography in
patients undergoing coronary artery surgery.Anesth
Analg 81:243–248, 1995.
268. Carton EG, Housmans PR: Role of transsarcolem-
mal Ca
2+
entry in the negative inotropic effects of
nitrous oxide in isolated ferret myocardium.Anesth
Analg 74:575–579, 1992.
269. Stowe DF, Monroe SM, Marijic J, et al: Effects of
nitrous oxide on contractile function and metabo-
lism of the isolated heart. Anesthesiology 73:1220–
1226, 1990.
270. Cason BA, Demas KA, Mazer CD, et al: Effects of
nitrous oxide on coronary pressure and regional
contractile function in experimental myocardial
ischemia. Anesth Analg 72:604–611, 1991.
271. Siker D, Pagel PS, Pelc LR, et al: Nitrous oxide
impairs functional recovery of stunned myocar-
dium in barbiturate-anesthetized, acutely instru-
mented dogs. Anesth Analg 75:539–548, 1992.
272. Weber NC, Toma O, Awan S, et al: Effects of nitrous
oxide on the rat heart in vivo. Another inhalational
Farmacología cardiovascular
397
13
Sección II
Farmacología y anestesia
© ELSEVIER. Fotocopiar sin autorización es un delito