anesthetic that preconditions the heart? Anesthesio-
logy 103:1174–1182, 2005.
273. Goto T, Saito H, Shinkai M, et al: Xenon provides
faster emergence from anesthesia than does nitrous
oxide–sevoflurane or nitrous oxide–isoflurane.
Anesthesiology 86:1273–1278, 1997.
274. Yagi M, Mashimo T, Kawaguchi T, et al: Analgesic
and hypnotic effects of subanaesthetic concentra-
tions of xenon in human volunteers: Comparison
with nitrous oxide. Br J Anaesth 74:670–673, 1995.
275. Ohara A, Mashimo M, Zhang P, et al: A comparative
study of the antinociceptive action of xenon and
nitrous oxide. Anesth Analg 85:931–936, 1997.
276. Lynch C III, Baum J, Tenbrinck R: Xenon anesthesia.
Anesthesiology 92:865–870, 2000.
277. Preckel B, Weber NC, Sanders RD, et al: Molecular
mechanisms transducing the anesthetic, analgesic,
and organ-protective actions of xenon. Anesthesio-
logy 105:187–197, 2006.
278. Marx T, Froeba G, Wagner D, et al: Effects on hae-
modynamics and catecholamine release of xenon
anaesthesia compared to total i.v. anaesthesia in the
pig. Br J Anaesth 78:326–327, 1997.
279. Hettrick DA, Pagel PS, Kersten JR, et al: Cardiovas-
cular effects of xenon in isoflurane-anesthetized
dogs with dilated cardiomyopathy. Anesthesiology
89:1166–1173, 1998.
280. Preckel B, Ebel D, Mullenheim J, et al: The direct
myocardial effects of xenon in the dog heart in vivo.
Anesth Analg 94:545–551, 2002.
281. Nakata Y, Goto M, Saito H, et al: Plasma concentra-
tion of fentanyl with xenon to block somatic and
hemodynamic responses to surgical incision. Anes-
thesiology 92:1043–1048, 2000.
282. Nakata Y, Goto T, Morita S: Effects of xenon on
hemodynamic responses to skin incision in humans.
Anesthesiology 90:406–410, 1999.
283. Stowe DF,Rehmert GC,KwokWK,et al: Xenon does
not alter cardiac function or major cation currents
in isolated guinea pig hearts or myocytes. Anesthe-
siology 93:1158–1159, 2000.
284. Huneke R, Jugling E, Skasa M, et al: Effects of the
anesthetic gases xenon, halothane, and isoflurane
on calcium and potassium currents in human
atrial cardiomyocytes. Anesthesiology 95:999–
1006, 2001.
285. Preckel B, Mullenheim J, Moloschavij A, et al:
Xenon administration during early reperfu-
sion reduces infarct size after regional ische-
mia in the rabbit heart in vivo. Anesth Analg
91:1327–1332, 2000.
286. Weber NC, Toma O, Wolter JI, et al: The noble gas
xenon induces pharmacological preconditioning in
the rat heart in vivo via induction of PKC-
ε
and p38
MAPK. Br J Pharmacol 144:123–132, 2005.
287. Weber NC, Stursberg J, Wirthle NM, et al: Xenon
preconditioning differently regulates p44/42 MAPK
(ERK1/2) and p46/54 MAPK (JNK 1/2 and 3) in
vivo. Br J Anaesth 97:298–306, 2006.
288. Weber NC, Toma O, Damla H, et al: Upstream signa-
ling of PKC-
ε
in xenon-induced pharmacological
preconditioning. Implication of mitochondrial K
ATP
channels and PDK-1. Eur J Pharmacol 539:1–9, 2006.
289. Pagel PS, Krolikowski JG, Venkatapuram S, et al:
Noble gases without anesthetic properties protect
myocardium against infarction by activating pro-
survival signaling kinases and inhibiting mitochon-
drial permeability transition in vivo. Anesth Analg
105:562–569, 2007.
398
Farmacología y anestesia
II