Table of Contents Table of Contents
Previous Page  398 / 2894 Next Page
Information
Show Menu
Previous Page 398 / 2894 Next Page
Page Background

anesthetic that preconditions the heart? Anesthesio-

logy 103:1174–1182, 2005.

273. Goto T, Saito H, Shinkai M, et al: Xenon provides

faster emergence from anesthesia than does nitrous

oxide–sevoflurane or nitrous oxide–isoflurane.

Anesthesiology 86:1273–1278, 1997.

274. Yagi M, Mashimo T, Kawaguchi T, et al: Analgesic

and hypnotic effects of subanaesthetic concentra-

tions of xenon in human volunteers: Comparison

with nitrous oxide. Br J Anaesth 74:670–673, 1995.

275. Ohara A, Mashimo M, Zhang P, et al: A comparative

study of the antinociceptive action of xenon and

nitrous oxide. Anesth Analg 85:931–936, 1997.

276. Lynch C III, Baum J, Tenbrinck R: Xenon anesthesia.

Anesthesiology 92:865–870, 2000.

277. Preckel B, Weber NC, Sanders RD, et al: Molecular

mechanisms transducing the anesthetic, analgesic,

and organ-protective actions of xenon. Anesthesio-

logy 105:187–197, 2006.

278. Marx T, Froeba G, Wagner D, et al: Effects on hae-

modynamics and catecholamine release of xenon

anaesthesia compared to total i.v. anaesthesia in the

pig. Br J Anaesth 78:326–327, 1997.

279. Hettrick DA, Pagel PS, Kersten JR, et al: Cardiovas-

cular effects of xenon in isoflurane-anesthetized

dogs with dilated cardiomyopathy. Anesthesiology

89:1166–1173, 1998.

280. Preckel B, Ebel D, Mullenheim J, et al: The direct

myocardial effects of xenon in the dog heart in vivo.

Anesth Analg 94:545–551, 2002.

281. Nakata Y, Goto M, Saito H, et al: Plasma concentra-

tion of fentanyl with xenon to block somatic and

hemodynamic responses to surgical incision. Anes-

thesiology 92:1043–1048, 2000.

282. Nakata Y, Goto T, Morita S: Effects of xenon on

hemodynamic responses to skin incision in humans.

Anesthesiology 90:406–410, 1999.

283. Stowe DF,Rehmert GC,KwokWK,et al: Xenon does

not alter cardiac function or major cation currents

in isolated guinea pig hearts or myocytes. Anesthe-

siology 93:1158–1159, 2000.

284. Huneke R, Jugling E, Skasa M, et al: Effects of the

anesthetic gases xenon, halothane, and isoflurane

on calcium and potassium currents in human

atrial cardiomyocytes. Anesthesiology 95:999–

1006, 2001.

285. Preckel B, Mullenheim J, Moloschavij A, et al:

Xenon administration during early reperfu-

sion reduces infarct size after regional ische-

mia in the rabbit heart in vivo. Anesth Analg

91:1327–1332, 2000.

286. Weber NC, Toma O, Wolter JI, et al: The noble gas

xenon induces pharmacological preconditioning in

the rat heart in vivo via induction of PKC-

ε

and p38

MAPK. Br J Pharmacol 144:123–132, 2005.

287. Weber NC, Stursberg J, Wirthle NM, et al: Xenon

preconditioning differently regulates p44/42 MAPK

(ERK1/2) and p46/54 MAPK (JNK 1/2 and 3) in

vivo. Br J Anaesth 97:298–306, 2006.

288. Weber NC, Toma O, Damla H, et al: Upstream signa-

ling of PKC-

ε

in xenon-induced pharmacological

preconditioning. Implication of mitochondrial K

ATP

channels and PDK-1. Eur J Pharmacol 539:1–9, 2006.

289. Pagel PS, Krolikowski JG, Venkatapuram S, et al:

Noble gases without anesthetic properties protect

myocardium against infarction by activating pro-

survival signaling kinases and inhibiting mitochon-

drial permeability transition in vivo. Anesth Analg

105:562–569, 2007.

398

Farmacología y anestesia

II