Table of Contents Table of Contents
Previous Page  623 / 2894 Next Page
Information
Show Menu
Previous Page 623 / 2894 Next Page
Page Background

38. Billard V, Gambus PL, Chamoun N, et al: A compa-

rison of spectral edge, delta power, and bispectral

index as EEG measures of alfentanil, propofol, and

midazolam drug effect. Clin Pharmacol Ther 61:45–

58, 1997.

39. Schnider TW, Minto CF, Fiset P, et al: Semilinear

canonical correlation applied to the measurement of

the electroencephalographic effects of midazolam

and flumazenil reversal. Anesthesiology 84:510–519,

1996.

40. Egan TD, Muir KT, Hermann DJ, et al: The electro-

encephalogram (EEG) and clinical measure of

opioid potency: Defining the EEG–clinical potency

relationship (“fingerprint”) with application to

remifentanil. Int J Pharm Med 15:1–9, 2001.

41. Ausems ME, Hug CC Jr, Stanski DR, et al: Plasma

concentrations of alfentanil required to supplement

nitrous oxide anesthesia for general surgery. Anes-

thesiology 65:362–373, 1986.

42. Glass PSA, Doherty M, Jacobs JR, et al: Plasma con-

centration of fentanyl, with 70% nitrous oxide, to

prevent movement at skin incision. Anesthesiology

78:842–847, 1993.

43. Gourlay GK, Kowalski SR, Plummer JL, et al: Fen-

tanyl blood concentration analgesic response rela-

tionship in the treatment of postoperative pain.

Anesth Analg 67:329–337, 1988.

44. Van den Nieuwenhuyzen MCO, Engbers FHM,

Burm AGL, et al: Computer-controlled infusion of

alfentanil versus PCA-morphine for postoperative

analgesia: A double-blind study. Anesth Analg

40:1112–1118, 1995.

45. Lehmann KA: Patient-controlled analgesia for posto-

perative pain. Adv Pain Res Ther 14:297, 1990.

46. Lehmann KA, Gerhard A, Horrichs-Haermeyer G,

et al: Postoperative patient-controlled analgesia

with sufentanil: Analgesic efficacy and minimum

effective concentrations. Acta Anaesthesiol Scand

35:221, 1991.

47. Ropcke H, Schwilden H: The interaction of nitrous

oxide and enflurane on the EEG median of 2-3 Hz

is additive, but weaker than at 1.0 MAC. Anaesthe-

sist 45:819–825, 1996.

48. Gonsowski CT, Eger EI 2nd: Nitrous oxide

minimum alveolar anesthetic concentration in rats

is greater than previously reported. Anesth Analg

79:710–712, 1994.

49. Deady JE, Koblin DD, Eger EI 2nd, et al: Anesthetic

potencies and the unitary theory of narcosis.Anesth

Analg 60:380–384, 1981.

50. Targ AG,Yasuda N, Eger EI 2nd, et al: Halogenation

and anesthetic potency. Anesth Analg 68:599–602,

1989.

51. Kissin I: General anesthetic action: An obsolete

notion? Anesth Analg 76:215–218, 1993.

52. Hendrickx JFA, Eger EI 2nd, Sonner JM, Shafer SL:

Is synergy the rule? A review of anesthetic interac-

tions producing hypnosis and immobility. Anesth

Analg 107:494–506, 2008.

53. Katoh T, Ikeda I: The effects of fentanyl on sevoflu-

rane requirements for loss of consciousness and

skin incision. Anesthesiology 88:18–24, 1998.

54. McEwan AI, Smith C, Dyar O, et al: Isoflurane MAC

reduction by fentanyl. Anesthesiology 78:864–869,

1993.

55. Brunner MD, Braithwaite P, Jhaveri R, et al: The

MAC reduction of isoflurane by sufentanil. Br J

Anaesth 72:42–46, 1994.

56. Westmoreland C, Sebel PS, Groper A, et al: Reduc-

tion of isoflurane MAC by fentanyl or alfentanil.

Anesthesiology 77:A394, 1992.

57. Lang E, Kapila A, Shlugman D, et al: Reduction of

isoflurane minimal alveolar concentration by remi-

fentanil. Anesthesiology 85:721–728, 1996.

58. Glass PSA, Jacobs JR, Smith RL, et al: Pharmacoki-

netic model–driven infusion of

fentanyl:Assessment

of accuracy. Anesthesiology 73:1082–1090, 1990.

59. Dwyer R, Bennett HL, Eger EI 2nd, et al: Isoflurane

anesthesia prevents unconscious learning. Anesth

Analg 75:107–112, 1992.

60. Minto CF, Schnider TW, Short TG, et al: Response

surface model for anesthetic drug interactions.

Anesthesiology 92:1603–1616, 2000.

61. Shafer SL, Varvel JR: Pharmacokinetics, pharmaco-

dynamics, and rational opioid selection. Anesthe-

siology 74:53–63, 1991.

62. Henthorn TK, Krejcie TC, Shanks CA, et al: Time-

dependent distribution volume and kinetics of the

pharmacodynamic effector site.J Pharm Sci 81:1136,

1992.

63. Wagner JG: A safe method for rapidly achieving

plasma concentration plateaus. Clin Pharmacol

Ther 16:691–700, 1974.

64. Bruhn J, Bouillon TW, Ropcke H, Hoeft A: A

manual slide rule for target-controlled infusion of

propofol: Development and evaluation. Anesth

Analg 96:142–147, 2003.

65. Hughes MA, Glass PSA, Jacobs JR: Context-sensi-

tive half-time in multicompartment pharmacokine-

tic models for intravenous anesthetic drugs.

Anesthesiology 76:334–341, 1992.

66. Schwilden H: Optimization of the dosage of volatile

anesthetics based on pharmacokinetic and dynamic

models. Anasth Intensivther Notfallmed 20:307–

315, 1985.

67. Fisher DM, Rosen JI: A pharmacokinetic explana-

tion for increasing recovery time following larger or

repeated doses of nondepolarizing muscle relaxants.

Anesthesiology 65:286–291, 1986.

68. Youngs EJ, Shafer SL: Pharmacokinetic parameters

relevant to recovery from opioids. Anesthesiology

81:833–842, 1994.

69. Bailey JM: Technique for quantifying the duration

of intravenous anesthetic effect. Anesthesiology

83:1095–1103, 1995.

70. Vuyk J, Mertens MJ, Olofsen E, et al: Propofol anes-

thesia and rational opioid selection: Determination

of optimal EC

50

-EC

95

propofol-opioid concentra-

tions that assure adequate anesthesia and a rapid

return of consciousness. Anesthesiology 87:1549–

1562, 1997.

71. Crankshaw DP, Morgan DJ, Beemer GH, et al: Pre-

programmed infusion of alfentanil to constant arte-

rial plasma concentration. Anesth Analg 76:556,

1993.

72. Shafer SL: Constant versus optimal plasma concen-

trations. Anesth Analg 76:467–469, 1993.

73. Reves JG, Jacobs JR, Glass PSA: Automated drug

delivery in anesthesia. In: ASA Refresher Course in

Anesthesiology. San Francisco, American Society of

Anesthesiologists, 1991, p 19.

74. Kruger-Thiemer E: Continuous intravenous infu-

sion and multicompartment accumulation. Eur J

Pharmacol 4:317–324, 1968.

75. Schwilden H,Schuttler J,Stoekel H: Pharmacokinetics

as applied to total intravenous a

naesthesia:Theoretical

considerations. Anaesthesia 38(Suppl):51–52, 1983.

76. Schüttler J, Schwilden H, Stoekel H: Pharmacokine-

tics as applied to total intravenous anaesthesia:

Practical implications. Anaesthesia 38(Suppl):53–

56, 1983.

77. Bazaral MG, Ciarkowski A: Food and drug admi-

nistration regulations and computer-controlled

infusion pumps. Int Anesthesiol Clin 33:45–63,

1995.

78. Shafer SL, Siegel LC, Cooke JE, et al: Testing com-

puter-controlled infusion pumps by simulation.

Anesthesiology 68:261–266, 1988.

79. Hu C, Horstman DJ, Shafer SL: Variability of target-

controlled infusion is less than the variability after

bolus injection. Anesthesiology 102:639–645, 2005.

80. Varvel JR, Donoho DL, Shafer SL: Measuring the

predictive performance of computer-controlled

infusion pumps. J Pharmacokinet Biopharm 20:63,

1992.

81. Raemer DB, Buschman A,Varvel JR, et al: The pros-

pective use of population pharmacokinetics in a

computer-driven infusion system for alfentanil.

Anesthesiology 73:66–72, 1990.

82. Schüttler J, Kloos S, Schwilden H, et al: Total intra-

venous anaesthesia with propofol and alfentanil by

computer-assisted

infusion.

Anaesthesia

43(Suppl):2–7, 1988.

83. Lemmens HJM, Bovill JG, Burm AGL, et al: Alfen-

tanil infusion in the elderly. Anaesthesia 43:850–

856, 1988.

84. Veselis RA, Glass P, Dnistrian A, et al: Performance

of computer-assisted continuous infusion at low

concentrations of intravenous sedatives. Anesth

Analg 84:1049–1057, 1997.

85. Shafer SL,Varvel SL,Aziz N, et al: The pharmacokine-

tics of fentanyl administered by computer controlled

infusion pump. Anesthesiology 73:1091–1102, 1990.

86. Alvis JM, Reves JG, Govier AV, et al: Computer

assisted continuous infusions of fentanyl during

cardiac anesthesia: Comparison with a manual

method. Anesthesiology 63:41–49, 1985.

87. Coetzee JF, Glen JB, Wium CA, et al: Pharmacoki-

netic model selection for target controlled infusions

of propofol: Assessment of three parameter sets.

Anesthesiology 82:1328–1345, 1995.

88. Marsh B,White M, Morton N, et al: Pharmacokine-

tic model driven infusion of propofol in children.

Br J Anaesth 67:41, 1991.

89. Tackley RM, Lewis GTR, Prys-Roberts C, et al:

Computer controlled infusion of propofol. Br J

Anaesth 62:46, 1989.

90. McClain DA, Hug CC Jr: Intravenous fentanyl kine-

tics. Clin Pharmacol Ther 28:106–114, 1980.

91. Ginsberg B, Howell S, Glass PSA, et al: Pharmaco-

kinetic model–driven infusion of fentanyl in chil-

dren. Anesthesiology 85:1268–1275, 1996.

92. Fiset P, Mathers L, Engstrom R, et al: Pharmacoki-

netics of computer controlled alfentanil administra-

tion in children undergoing cardiac surgery.

Anesthesiology 83:944–955, 1995.

93. Bailey JM, Mora CT, Shafer SL, et al: Pharmacoki-

netics of propofol in adult patients undergoing

coronary

revascularization.

Anesthesiology

81:1288–1297, 1996.

94. Wu J, Zhu SM, He HL, et al: Plasma propofol con-

centrations during orthotopic liver trasplantation.

Acta Anaesthesiol Scand 49:804–819, 2005.

95. Vuyk J, Oostwouder CJ, Vletter AA, et al: Gender

differences in the pharmacokinetics of propofol in

elderly patients during and after continuous infu-

sion. Br J Anaesth 86:183–188, 2001.

96. Schuttler J, Ihmsen H: Population pharmacokinetics

of propofol: A multicenter study. Anesthesiology

92:727–738, 2000.

97. Kazama T, Kurita T, Morita K, et al: Influence of

hemorrhage on propofol pseudo–steady state con-

centration. Anesthesiology 97:1156–1161, 2002.

98. Egan TD, Kuramkote S, Gong G, et al: Fentanyl

pharmacokinetics in hemorrhagic shock: A porcine

model. Anesthesiology 91:156–166, 1999.

99. Johnson KB, Kern SE, Hamber EA, et al: Influence

of hemorrhagic shock on remifentanil: A pharma-

cokinetic and pharmacodynamic analysis. Anesthe-

siology 94:322–332, 2001.

100. Pavlin DJ, Coda B, Shen DD, et al: Effects of com-

bining propofol and alfentanil on ventilation, anal-

gesia, sedation, and emesis in human volunteers.

Anesthesiology 84:23–37, 1996.

101. Kharasch ED, Russell M, Mautz D, et al: The role of

cytochrome P450 3A4 in alfentanil clearance.Anes-

thesiology 87:36–50, 1997.

102. Vuyk J, Mertens MJ, Vletter AA, et al: Alfentanil

modifies the pharmacokinetics of propofol in

volunteers. Anesthesiology 87:A300, 1997.

103. Bouillon T, Bruhn J, Radu-Radulescu L, et al: Non–

steady state analysis of the pharmacokinetic interac-

tion

between

propofol

and

remifentanil.

Anesthesiology 97:1350–1362, 2002.

104. Knibbe CA,Zuideveld KP,DeJongh J,et al: Population

pharmacokinetic and pharmacodynamic modeling of

propofol for long-term sedation in critically ill

patients:A comparison between propofol 6% and pro-

pofol 1%. Clin Pharmacol Ther 72:670–684, 2002.

105. Hill HF, Saeger L, Bjurstrom R, et al: Steady-state

infusions of opioids in human volunteers. I. Phar-

macokinetic tailoring. Pain 43:57, 1990.

106. Maitre PE,Stanski DR: Bayesian forecasting improves

the prediction of intraoperative plasma concentra-

tions of alfentanil. Anesthesiology 69:652–659, 1988.

107. Wakeling HG, Zimmerman JB, Howell S, Glass PS:

Targetingeffectcompartmentorcentralcompartment

concentration of

propofol:What

predicts loss of cons-

ciousness? Anesthesiology 90:92–97, 1999.

Sistemas de administración de fármacos intravenosos

623

18

Sección II

Farmacología y anestesia

© ELSEVIER. Fotocopiar sin autorización es un delito